login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265751 Square array A(row,col): A(row,0) = row and for col >= 1, if A082284(row) is 0, then A(row,col) = 0, otherwise A(row,col) = A(A082284(row),col-1). 6
0, 1, 1, 3, 3, 2, 5, 5, 6, 3, 7, 7, 9, 5, 4, 0, 0, 11, 7, 8, 5, 0, 0, 13, 0, 0, 7, 6, 0, 0, 0, 0, 0, 0, 9, 7, 0, 0, 0, 0, 0, 0, 11, 0, 8, 0, 0, 0, 0, 0, 0, 13, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 13, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 14 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The square array A(row>=0, col>=0) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...

Each row n lists all the nodes in A263267-tree that one encounters when one starts from node with number n and always chooses the smallest possible child of it [given by A082284(n)], and then the smallest possible child of that child, etc, until a leaf-child (one of the terms of A045765) is encountered, after which the rest of the row contains only zeros.

LINKS

Table of n, a(n) for n=0..119.

FORMULA

A(row,0) = row and for col >= 1, if A082284(row) is 0, then A(row,col) = 0, otherwise A(row,col) = A(A082284(row),col-1).

A(0,0) = 0, A(0,1) = 1; if col = 0, A(row,0) = row; and for col > 0, if A(row,col-1) = 0, then A(row,col) = 0, otherwise A(row,col) = A082284(A(row,col-1)).

EXAMPLE

The top left corner of the array:

   0,  1,  3,  5,  7,  0,  0,  0,  0

   1,  3,  5,  7,  0,  0,  0,  0,  0

   2,  6,  9, 11, 13,  0,  0,  0,  0

   3,  5,  7,  0,  0,  0,  0,  0,  0

   4,  8,  0,  0,  0,  0,  0,  0,  0

   5,  7,  0,  0,  0,  0,  0,  0,  0

   6,  9, 11, 13,  0,  0,  0,  0,  0

   7,  0,  0,  0,  0,  0,  0,  0,  0

   8,  0,  0,  0,  0,  0,  0,  0,  0

   9, 11, 13,  0,  0,  0,  0,  0,  0

  10, 14, 20,  0,  0,  0,  0,  0,  0

  11, 13,  0,  0,  0,  0,  0,  0,  0

  12, 18, 22, 25,  0,  0,  0,  0,  0

  13,  0,  0,  0,  0,  0,  0,  0,  0

  14, 20,  0,  0,  0,  0,  0,  0,  0

  15, 17, 19,  0,  0,  0,  0,  0,  0

  16, 24,  0,  0,  0,  0,  0,  0,  0

  17, 19,  0,  0,  0,  0,  0,  0,  0

  18, 22, 25,  0,  0,  0,  0,  0,  0

  19,  0,  0,  0,  0,  0,  0,  0,  0

  20,  0,  0,  0,  0,  0,  0,  0,  0

  21, 23, 27, 29, 31, 35, 37,  0,  0

  22, 25,  0,  0,  0,  0,  0,  0,  0

  23, 27, 29, 31, 35, 37,  0,  0,  0

  ...

Starting from n = 21, we get the following chain: 21 -> 23 -> 27 -> 29 -> 31 -> 35 -> 37, with A082284 iterated 6 times before the final nonzero term 37 (for which A060990(37) = A082284(37) = 0) is encountered. Thus the row 21 of array contains terms 21, 23, 27, 29, 31, 35, 37, followed by an infinite number of zeros.

PROG

(Scheme)

(define (A265751 n) (A265751bi (A002262 n) (A025581 n)))

(define (A265751bi row col) (cond ((zero? col) row) ((A082284 row) => (lambda (lad) (if (zero? lad) lad (A265751bi lad (- col 1)))))))

;; Alternatively:

(define (A265751bi row col) (cond ((zero? col) row) ((and (zero? row) (= 1 col)) 1) ((zero? (A265751bi row (- col 1))) 0) (else (A082284 (A265751bi row (- col 1))))))

CROSSREFS

Cf. also A000005, A045765, A060990.

Column 0: A001477, Column 1: A082284.

Cf. A266111 (number of significant terms on each row, without the trailing zeros).

Cf. A266116 (the rightmost term before trailing zeros).

See also array A263271 constructed in the same way, but obtained by following always the largest child A262686, instead of the smallest child A082284.

Cf. also tree A263267 (and its illustration).

Sequence in context: A116644 A166462 A279056 * A143050 A214919 A290599

Adjacent sequences:  A265748 A265749 A265750 * A265752 A265753 A265754

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, Dec 21 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 06:12 EDT 2018. Contains 316304 sequences. (Running on oeis4.)