The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239767 Degrees of polynomial on the fermionic side of the finite generalization of identity 46 from Slater's List. 1
 0, 1, 6, 11, 22, 31, 48, 61, 84, 101, 130, 151, 186, 211, 252, 281, 328, 361, 414, 451, 510, 551, 616, 661, 732, 781, 858, 911, 994, 1051, 1140, 1201, 1296, 1361, 1462, 1531, 1638, 1711, 1824, 1901, 2020, 2101, 2226, 2311, 2442, 2531, 2668, 2761, 2904, 3001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A "Rogers-Ramanujan-Slater" type identity is an identity containing a variable q which equates an infinite product with an infinite series. A finite generalization of such an identity consists of two sequences of polynomials, such that corresponding terms in each sequence are equal and one sequence tends to the infinite sum and the other sequence tends to the infinite product. [From AMS Abstracts 2008 Eric Werley by Michael Somos, Mar 27 2014] In statistical mechanics, the fermionic side of a Rogers-Ramanujan type identity is the infinite series side of the identity and the bosonic side is the infinite product side of the identity. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 George E. Andrews, The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci. U.S.A., 78(1981), 5290-5292. L. J. Slater, Further Identities of the Rogers-Ramanujan Type, Proc. London Math. Soc., 54(1952), 147-167. Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = (1/8)*(10*n^2 + 2*(1+(-1)^n)*n - (1-(-1)^n)). a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). G.f.: -x*(x^3+3*x^2+5*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Mar 26 2014 MAPLE A239767:=n->(10*n^2 + 2*n*(1+(-1)^n) - (1-(-1)^n))/8; seq(A239767(n), n=0..100); # Wesley Ivan Hurt, Mar 27 2014 MATHEMATICA Table[(10 n^2 + 2 n (1 + (-1)^n) - (1 - (-1)^n))/8, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 27 2014 *) CoefficientList[Series[- x (x^3 + 3 x^2 + 5 x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *) PROG (PARI) concat(0, Vec(-x*(x^3+3*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Mar 26 2014 (MAGMA) [(1/8)*(10*n^2+2*(1+(-1)^n)*n-(1-(-1)^n)): n in [0..50]]; // Vincenzo Librandi, Mar 29 2014 CROSSREFS Sequence in context: A083575 A302869 A170880 * A046616 A155449 A220154 Adjacent sequences:  A239764 A239765 A239766 * A239768 A239769 A239770 KEYWORD nonn,easy AUTHOR Eric Werley, Mar 26 2014 EXTENSIONS More terms from Colin Barker, Mar 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 03:49 EST 2020. Contains 331241 sequences. (Running on oeis4.)