OFFSET
1,1
COMMENTS
Or, numbers k such that k^2 == 2 (mod 17).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=6, a(2)=11, a(3)=23.
G.f.: x*(6 + 5*x + 6*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/34)*Pi/17. - Amiram Eldar, Feb 27 2023
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {6, 11, 23}, 100] (* Vincenzo Librandi, Feb 29 2012 *)
CoefficientList[Series[(6 + 5 x + 6 x^2)/((1 + x) (1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 22 2009
EXTENSIONS
Simpler definition from Franklin T. Adams-Watters, Jun 16 2010
STATUS
approved