login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155449
Numbers k == 6 or 11 (mod 17).
6
6, 11, 23, 28, 40, 45, 57, 62, 74, 79, 91, 96, 108, 113, 125, 130, 142, 147, 159, 164, 176, 181, 193, 198, 210, 215, 227, 232, 244, 249, 261, 266, 278, 283, 295, 300, 312, 317, 329, 334, 346, 351, 363, 368, 380, 385, 397, 402, 414, 419, 431, 436, 448, 453
OFFSET
1,1
COMMENTS
Or, numbers k such that k^2 == 2 (mod 17).
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=6, a(2)=11, a(3)=23.
G.f.: x*(6 + 5*x + 6*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/34)*Pi/17. - Amiram Eldar, Feb 27 2023
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {6, 11, 23}, 100] (* Vincenzo Librandi, Feb 29 2012 *)
CoefficientList[Series[(6 + 5 x + 6 x^2)/((1 + x) (1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
CROSSREFS
Sequence in context: A170880 A239767 A046616 * A220154 A362441 A309742
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 22 2009
EXTENSIONS
Simpler definition from Franklin T. Adams-Watters, Jun 16 2010
STATUS
approved