OFFSET
0,1
COMMENTS
Binary numbers of form 1111(0^n)1 where n is the index and number of 0's.
Base 10 numbers of this sequence always end in 1.
An Engel expansion of 1/15 to the base 2 as defined in A181565, with the associated series expansion 1/15 = 2/31 + 2^2/(31*61) + 2^3/(31*61*121) + 2^4/(31*61*121*241) + ... . - Peter Bala, Oct 29 2013
The only squares in this sequence are 121 = 11^2 and 961 = 31^2. - Antti Karttunen, Sep 24 2023
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2).
FORMULA
From Bruno Berselli, Sep 23 2011: (Start)
G.f.: (31-32*x)/(1-3*x+2*x^2).
a(n) = 2*a(n-1)-1.
E.g.f.: exp(x)*(1 + 30*exp(x)). - Stefano Spezia, Oct 08 2022
EXAMPLE
First few terms in binary are 11111, 111101, 1111001, 11110001, 111100001.
MATHEMATICA
15*2^Range[50] + 1 (* Paolo Xausa, Apr 02 2024 *)
PROG
(Magma) [15*2^(n+1) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 24 2011
(PARI) a(n)=30*2^n+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Brad Clardy, Sep 23 2011
EXTENSIONS
Corrected by Arkadiusz Wesolowski, Sep 23 2011
STATUS
approved