login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195744
a(n) = 15*2^(n+1) + 1.
12
31, 61, 121, 241, 481, 961, 1921, 3841, 7681, 15361, 30721, 61441, 122881, 245761, 491521, 983041, 1966081, 3932161, 7864321, 15728641, 31457281, 62914561, 125829121, 251658241, 503316481, 1006632961, 2013265921, 4026531841, 8053063681, 16106127361
OFFSET
0,1
COMMENTS
Binary numbers of form 1111(0^n)1 where n is the index and number of 0's.
Base 10 numbers of this sequence always end in 1.
An Engel expansion of 1/15 to the base 2 as defined in A181565, with the associated series expansion 1/15 = 2/31 + 2^2/(31*61) + 2^3/(31*61*121) + 2^4/(31*61*121*241) + ... . - Peter Bala, Oct 29 2013
The only squares in this sequence are 121 = 11^2 and 961 = 31^2. - Antti Karttunen, Sep 24 2023
FORMULA
a(n) = A052996(n+3) + A164094(n+2).
From Bruno Berselli, Sep 23 2011: (Start)
G.f.: (31-32*x)/(1-3*x+2*x^2).
a(n) = 2*a(n-1)-1.
a(n) = A110286(n+1)+1 = A128470(2^n). (End)
E.g.f.: exp(x)*(1 + 30*exp(x)). - Stefano Spezia, Oct 08 2022
For n >= 0, A005940(a(n)) = A030514(2+n). - Antti Karttunen, Sep 24 2023
EXAMPLE
First few terms in binary are 11111, 111101, 1111001, 11110001, 111100001.
MATHEMATICA
15*2^Range[50] + 1 (* Paolo Xausa, Apr 02 2024 *)
PROG
(Magma) [15*2^(n+1) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 24 2011
(PARI) a(n)=30*2^n+1 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
easy,nonn
AUTHOR
Brad Clardy, Sep 23 2011
EXTENSIONS
Corrected by Arkadiusz Wesolowski, Sep 23 2011
STATUS
approved