Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #69 Apr 02 2024 11:07:13
%S 31,61,121,241,481,961,1921,3841,7681,15361,30721,61441,122881,245761,
%T 491521,983041,1966081,3932161,7864321,15728641,31457281,62914561,
%U 125829121,251658241,503316481,1006632961,2013265921,4026531841,8053063681,16106127361
%N a(n) = 15*2^(n+1) + 1.
%C Binary numbers of form 1111(0^n)1 where n is the index and number of 0's.
%C Base 10 numbers of this sequence always end in 1.
%C An Engel expansion of 1/15 to the base 2 as defined in A181565, with the associated series expansion 1/15 = 2/31 + 2^2/(31*61) + 2^3/(31*61*121) + 2^4/(31*61*121*241) + ... . - _Peter Bala_, Oct 29 2013
%C The only squares in this sequence are 121 = 11^2 and 961 = 31^2. - _Antti Karttunen_, Sep 24 2023
%H Vincenzo Librandi, <a href="/A195744/b195744.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F a(n) = A052996(n+3) + A164094(n+2).
%F From _Bruno Berselli_, Sep 23 2011: (Start)
%F G.f.: (31-32*x)/(1-3*x+2*x^2).
%F a(n) = 2*a(n-1)-1.
%F a(n) = A110286(n+1)+1 = A128470(2^n). (End)
%F E.g.f.: exp(x)*(1 + 30*exp(x)). - _Stefano Spezia_, Oct 08 2022
%F For n >= 0, A005940(a(n)) = A030514(2+n). - _Antti Karttunen_, Sep 24 2023
%e First few terms in binary are 11111, 111101, 1111001, 11110001, 111100001.
%t 15*2^Range[50] + 1 (* _Paolo Xausa_, Apr 02 2024 *)
%o (Magma) [15*2^(n+1) + 1: n in [0..30]]; // _Vincenzo Librandi_, Sep 24 2011
%o (PARI) a(n)=30*2^n+1 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A052996, A164094.
%Y Cf. A020737, A083575, A083683, A083686, A083705, A168596, A181565.
%Y Cf. A110286, A128470.
%Y Cf. A005940, A030514.
%K easy,nonn
%O 0,1
%A _Brad Clardy_, Sep 23 2011
%E Corrected by _Arkadiusz Wesolowski_, Sep 23 2011