|
|
A083705
|
|
a(n) = 2*a(n-1) - 1 with a(0) = 10.
|
|
10
|
|
|
10, 19, 37, 73, 145, 289, 577, 1153, 2305, 4609, 9217, 18433, 36865, 73729, 147457, 294913, 589825, 1179649, 2359297, 4718593, 9437185, 18874369, 37748737, 75497473, 150994945, 301989889, 603979777, 1207959553, 2415919105, 4831838209, 9663676417, 19327352833
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
An Engel expansion of 2/9 to the base 2 as defined in A181565, with the associated series expansion 2/9 = 2/10 + 2^2/(10*19) + 2^3/(10*19*37) + 2^4/(10*19*37*73) + ... . - Peter Bala, Oct 29 2013
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 1 + 9*2^n = 3*a(n-1) - 2*a(n-2).
G.f.: -(-10+11*x)/((2*x-1)*(x-1)). (End)
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
from itertools import accumulate
def f(an, _): return 2*an - 1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|