login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117804
Natural position of n in the string 12345678910111213....
36
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
OFFSET
1,2
COMMENTS
The number of digits necessary to write down all the numbers 0, 1, 2, ..., n-1. Thus, the partial sums of A055642 are given by a(n+1). - Hieronymus Fischer, Jun 08 2012
From Daniel Forgues, Mar 21 2013: (Start)
From n = 10^0 + 1 to 10^1: a(n) - a(n-1) = 1 (9 * 10^0 terms);
From n = 10^1 + 1 to 10^2: a(n) - a(n-1) = 2 (9 * 10^1 terms);
From n = 10^2 + 1 to 10^3: a(n) - a(n-1) = 3 (9 * 10^2 terms);
...
From n = 10^k + 1 to 10^(k+1): a(n) - a(n-1) = k+1 (9 * 10^k terms). (End)
By the "number of digits" definition, a(n) = 1 + A058183(n-1) for n > 1. - David Fifield, Jun 02 2019
LINKS
FORMULA
a(n) = d*n + 1 - (10^d - 1)/9 where d is the number of decimal digits in n, i.e., d = floor(log_10(n)) + 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
a(n) = Sum_{j=0..n-1} A055642(j).
a(n) = 1 + A055642(n-1)*n - (10^A055642(n-1)-1)/9.
a(n) = 1 + A055642(n)*n - (10^A055642(n)-1)/9.
a(10^n) = (9*n-1)*(10^n-1)/9 + n + 1. (This is the total number of digits necessary to write down all the numbers with <= n places.)
G.f.: g(x) = x/(1-x) + (x/(1-x)^2)*Sum_{j>=0} x^10^j; corrected by Ilya Gutkovskiy, Jan 09 2017 (End)
EXAMPLE
12 begins at the 14th place in 12345678910111213... (we are ignoring "early bird" occurrences here, cf. A116700), so a(12) = 14.
From Daniel Forgues, Mar 21 2013: (Start)
a(10^1) = 10. (1*10^1 - 0)
a(10^2) = 190. (2*10^2 - 10)
a(10^3) = 2890. (3*10^3 - 110)
a(10^4) = 38890. (4*10^4 - 1110)
a(10^5) = 488890. (5*10^5 - 11110)
a(10^6) = 5888890. (6*10^6 - 111110)
...
a(10^k) = k*10^k - R_k + 1, R_k := k-th repunit (cf. A002275)
(the number of digits necessary to write down the numbers 0..10^k-1). (End)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Warut Roonguthai, Jul 23 2007
STATUS
approved