|
|
A058183
|
|
Number of digits in concatenation of first n positive integers.
|
|
27
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Or, total number of digits in numbers from 1 through n.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n+1)*floor(log_10(10*n)) - (10^floor(log_10(10*n))-1)/(10-1).
a(n) = a(n-1) + floor(log_10(10*n)).
a(n) ~ n log_10 n + O(n). In particular lim inf (n log_10 n - a(n))/n = (1+log(10/9)+log(log(10)))/log(10) and the corresponding lim sup is 10/9. - Charles R Greathouse IV, Sep 19 2012
G.f.: (1-x)^(-2)*Sum_{j>=0} x^(10^j). - Robert Israel, Nov 04 2015
|
|
EXAMPLE
|
a(12) = 15 since 123456789101112 has 15 digits.
|
|
MAPLE
|
a:= proc(n) a(n):= `if`(n=0, 0, a(n-1) +length(n)) end:
a := proc(n) local d; d:=floor(log10(n))+1; (n+1)*d - (10^d-1)/9; end; # N. J. A. Sloane, Feb 20 2020
|
|
MATHEMATICA
|
Length/@ Flatten/@ IntegerDigits/@ Flatten/@ Rest[FoldList[List, {}, Range[70]]] (* Eric W. Weisstein, Nov 04 2015 *)
Table[With[{d = IntegerLength[n]}, (n+1) d - (10^d -1)/9], {n, 70}] (* Eric W. Weisstein, Nov 06 2015 *)
IntegerLength/@ FoldList[#2 + #1 10^IntegerLength[#2] &, Range[70]] (* Eric W. Weisstein, Nov 06 2015 *)
|
|
PROG
|
(PARI) a(n) = sum(k=1, n, #digits(k)); \\ Michel Marcus, Jan 01 2017
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|