login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240322
Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.
1
2, 5, 17, 37, 80, 213, 443, 1028, 2511, 5370, 12742, 29737, 65687, 155443, 355668, 803696, 1883007, 4285398, 9805203, 22760901, 51853646, 119272787, 275149593, 628629688, 1447871151, 3328934761, 7625189365, 17555754237, 40308328871
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13) for n>14.
Empirical g.f.: x*(2 + 5*x + 13*x^2 + 7*x^3 - 2*x^4 - 16*x^5 - 15*x^6 - 3*x^7 + 2*x^8 + 11*x^9 + 13*x^10 + 3*x^11 - 3*x^12 - 4*x^13) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 27 2018
EXAMPLE
Some solutions for n=4:
..3..2....3..2....3..2....3..2....3..2....2..3....2..3....2..3....2..3....2..3
..2..1....2..1....2..3....2..1....2..1....3..2....3..0....3..0....3..0....3..0
..3..1....2..0....3..2....3..2....3..0....2..3....3..2....3..1....2..1....3..1
..2..1....2..0....2..1....3..2....3..2....2..1....3..2....3..1....2..1....2..3
CROSSREFS
Column 2 of A240327.
Sequence in context: A107630 A078523 A078324 * A346809 A276460 A002496
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 03 2014
STATUS
approved