|
|
A240321
|
|
T(n,k)=Number of nXk 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4
|
|
6
|
|
|
2, 2, 2, 4, 4, 4, 4, 18, 18, 4, 8, 44, 172, 44, 8, 8, 184, 866, 866, 184, 8, 16, 444, 7326, 8456, 7326, 444, 16, 16, 1826, 35042, 143682, 143682, 35042, 1826, 16, 32, 4388, 291982, 1352558, 4934092, 1352558, 291982, 4388, 32, 32, 18022, 1387224, 22643786
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
..2.....2........4...........4..............8...............8...............16
..2.....4.......18..........44............184.............444.............1826
..4....18......172.........866...........7326...........35042...........291982
..4....44......866........8456.........143682.........1352558.........22643786
..8...184.....7326......143682........4934092........92600224.......3120733284
..8...444....35042.....1352558.......92600224......3462370700.....233738937688
.16..1826...291982....22643786.....3120733284....233738937688...31675283550406
.16..4388..1387224...211572262....58052954898...8672268288766.2350783897073214
.32.18022.11520638..3529400774..1946100075968.582902538705858
.32.43300.54650290.32917918872.36103692985126
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..111
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 2*a(n-2)
k=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8)
k=3: [order 48]
|
|
EXAMPLE
|
Some solutions for n=4 k=4
..3..3..1..3....1..1..3..1....3..3..3..1....3..3..1..3....3..3..1..3
..3..0..0..0....1..0..2..2....3..2..0..0....3..0..0..2....3..0..2..2
..1..0..2..0....3..0..0..2....3..0..2..2....1..0..0..0....1..0..2..2
..3..0..0..3....1..2..2..2....1..2..0..0....3..2..1..1....3..2..1..2
|
|
CROSSREFS
|
Column 1 is A016116(n+1)
Sequence in context: A355911 A113402 A238726 * A054861 A187324 A334207
Adjacent sequences: A240318 A240319 A240320 * A240322 A240323 A240324
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Apr 03 2014
|
|
STATUS
|
approved
|
|
|
|