login
A187324
a(n) = floor(n/2) + floor(n/3) - floor(n/4).
1
0, 0, 1, 2, 2, 2, 4, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 9, 11, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 16, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23, 23, 25, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 30, 32, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 37, 39, 39, 39, 40, 41, 41, 42, 42, 43, 44, 44, 44, 46, 46, 46, 47, 48
OFFSET
0,4
FORMULA
a(n) = floor(n/2) + floor(n/3) - floor(n/4).
G.f.: x^2*(1 + 2*x + 2*x^2 + x^3 + x^4) / ( (1+x)*(x^2+1)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Mar 08 2011
For n > 0, a(n) = A010761(n) - A002265(n). - Bruno Berselli, Mar 08 2011
MATHEMATICA
Table[Floor[n/2]+Floor[n/3]-Floor[n/4], {n, 0, 120}]
PROG
(Magma) [Floor(n/2)+Floor(n/3)-Floor(n/4): n in [0..85] ]; // Vincenzo Librandi, Jul 18 2011
(Python)
def A187324(n): return (n>>2)+bool(n&2)+n//3 # Chai Wah Wu, Jan 31 2023
CROSSREFS
Sequence in context: A238726 A240321 A054861 * A334207 A323094 A086227
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 08 2011
STATUS
approved