Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 31 2023 15:02:48
%S 0,0,1,2,2,2,4,4,4,5,6,6,7,7,8,9,9,9,11,11,11,12,13,13,14,14,15,16,16,
%T 16,18,18,18,19,20,20,21,21,22,23,23,23,25,25,25,26,27,27,28,28,29,30,
%U 30,30,32,32,32,33,34,34,35,35,36,37,37,37,39,39,39,40,41,41,42,42,43,44,44,44,46,46,46,47,48
%N a(n) = floor(n/2) + floor(n/3) - floor(n/4).
%H Vincenzo Librandi, <a href="/A187324/b187324.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,0,0,-1).
%F a(n) = floor(n/2) + floor(n/3) - floor(n/4).
%F G.f.: x^2*(1 + 2*x + 2*x^2 + x^3 + x^4) / ( (1+x)*(x^2+1)*(1+x+x^2)*(x-1)^2 ). - _R. J. Mathar_, Mar 08 2011
%F For n > 0, a(n) = A010761(n) - A002265(n). - _Bruno Berselli_, Mar 08 2011
%t Table[Floor[n/2]+Floor[n/3]-Floor[n/4], {n,0,120}]
%o (Magma) [Floor(n/2)+Floor(n/3)-Floor(n/4): n in [0..85] ]; // _Vincenzo Librandi_, Jul 18 2011
%o (Python)
%o def A187324(n): return (n>>2)+bool(n&2)+n//3 # _Chai Wah Wu_, Jan 31 2023
%K nonn,easy
%O 0,4
%A _Clark Kimberling_, Mar 08 2011