login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086227
a(n) = Sum_{1<=k<=4*n, gcd(k,n)=1} (i^k*tan(k*Pi/(4*n)))/(4*i), where i is the imaginary unit.
2
-1, 2, -2, 2, -4, 4, -4, 6, -4, 6, -8, 6, -8, 8, -8, 8, -12, 10, -8, 16, -12, 12, -16, 10, -12, 18, -16, 14, -16, 16, -16, 24, -16, 16, -24, 18, -20, 24, -16, 20, -32, 22, -24, 24, -24, 24, -32, 28, -20, 32, -24, 26, -36, 24, -32, 40, -28, 30, -32, 30, -32, 48, -32, 24, -48, 34, -32, 48, -32, 36, -48, 36, -36, 40, -40, 48, -48
OFFSET
2,2
COMMENTS
This seems to be (-1)^(n+1) times h(-4n^2) = (-1)^(n+1)*A000003(n^2), where h(k) is the class number. Verified for n <= 10^5. - Charles R Greathouse IV, Apr 28 2013
LINKS
Stanley Rabinowitz, Problem 2129, Crux Mathematicorum, Vol. 22, No. 3 (1996), p. 123; Solution to Problem 2129, by G. P. Henderson and Kurt Girstmair, ibid., Vol. 23, No. 4 (1997), pp. 246-249.
FORMULA
a(n) = -A204617(n) if n is even, and A204617(n)/2 if n is odd (Rabinowitz, 1996). - Amiram Eldar, Mar 07 2022
a(n) = (-1)^(n+1)*A079458(n)/A140434(n). - Ridouane Oudra, Jun 23 2024
MATHEMATICA
f[p_, e_] := p^(e - 1) * Switch[Mod[p, 4], 2, 1, 1, p - 1, 3, p + 1]; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := If[EvenQ[n], -s[n], s[n]/2]; Array[a, 100, 2] (* Amiram Eldar, Mar 07 2022 *)
PROG
(PARI) a(n)=round(real(1/4/I*sum(k=1, 4*n, (I^k)*tan(Pi/4/n*if(gcd(k, n)-1, 0, k)))))
(PARI) a(n)=round(imag(sum(k=1, 4*n, if(gcd(k, n)==1, I^k*tan(k*Pi/4/n))))/4) \\ Charles R Greathouse IV, Apr 25 2013
(PARI) a(n)=my(s); for(k=1, 2*n, if(gcd(2*k-1, n)==1, s-=(-1)^k*tan((2*k-1)*Pi/4/n))); round(s/4) \\ Charles R Greathouse IV, Apr 25 2013
CROSSREFS
KEYWORD
sign
AUTHOR
Benoit Cloitre, Aug 28 2003
EXTENSIONS
Definition corrected by Charles R Greathouse IV, Apr 25 2013
STATUS
approved