login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{1<=k<=4*n, gcd(k,n)=1} (i^k*tan(k*Pi/(4*n)))/(4*i), where i is the imaginary unit.
2

%I #33 Jun 24 2024 08:48:22

%S -1,2,-2,2,-4,4,-4,6,-4,6,-8,6,-8,8,-8,8,-12,10,-8,16,-12,12,-16,10,

%T -12,18,-16,14,-16,16,-16,24,-16,16,-24,18,-20,24,-16,20,-32,22,-24,

%U 24,-24,24,-32,28,-20,32,-24,26,-36,24,-32,40,-28,30,-32,30,-32,48,-32,24,-48,34,-32,48,-32,36,-48,36,-36,40,-40,48,-48

%N a(n) = Sum_{1<=k<=4*n, gcd(k,n)=1} (i^k*tan(k*Pi/(4*n)))/(4*i), where i is the imaginary unit.

%C This seems to be (-1)^(n+1) times h(-4n^2) = (-1)^(n+1)*A000003(n^2), where h(k) is the class number. Verified for n <= 10^5. - _Charles R Greathouse IV_, Apr 28 2013

%H Amiram Eldar, <a href="/A086227/b086227.txt">Table of n, a(n) for n = 2..10000</a>

%H Stanley Rabinowitz, <a href="https://cms.math.ca/publications/crux/issue?volume=22&amp;issue=3">Problem 2129</a>, Crux Mathematicorum, Vol. 22, No. 3 (1996), p. 123; <a href="https://cms.math.ca/publications/crux/issue?volume=23&amp;issue=4">Solution to Problem 2129</a>, by G. P. Henderson and Kurt Girstmair, ibid., Vol. 23, No. 4 (1997), pp. 246-249.

%F a(n) = -A204617(n) if n is even, and A204617(n)/2 if n is odd (Rabinowitz, 1996). - _Amiram Eldar_, Mar 07 2022

%F a(n) = (-1)^(n+1)*A079458(n)/A140434(n). - _Ridouane Oudra_, Jun 23 2024

%t f[p_, e_] := p^(e - 1) * Switch[Mod[p, 4], 2, 1, 1, p - 1, 3, p + 1]; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := If[EvenQ[n], -s[n], s[n]/2]; Array[a, 100, 2] (* _Amiram Eldar_, Mar 07 2022 *)

%o (PARI) a(n)=round(real(1/4/I*sum(k=1,4*n,(I^k)*tan(Pi/4/n*if(gcd(k,n)-1,0,k)))))

%o (PARI) a(n)=round(imag(sum(k=1,4*n,if(gcd(k,n)==1,I^k*tan(k*Pi/4/n))))/4) \\ _Charles R Greathouse IV_, Apr 25 2013

%o (PARI) a(n)=my(s);for(k=1,2*n,if(gcd(2*k-1,n)==1,s-=(-1)^k*tan((2*k-1)*Pi/4/n))); round(s/4) \\ _Charles R Greathouse IV_, Apr 25 2013

%Y Cf. A000003, A204617,A079458, A140434.

%K sign

%O 2,2

%A _Benoit Cloitre_, Aug 28 2003

%E Definition corrected by _Charles R Greathouse IV_, Apr 25 2013