

A054755


Odd powers of primes of the form q = x^2 + 1 (A002496).


9



2, 5, 8, 17, 32, 37, 101, 125, 128, 197, 257, 401, 512, 577, 677, 1297, 1601, 2048, 2917, 3125, 3137, 4357, 4913, 5477, 7057, 8101, 8192, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A002496 is a subset; the odd power exponent is 1.
From Bernard Schott, Mar 16 2019: (Start)
The terms of this sequence are exactly the integers with only one prime factor and whose Euler's totient is square, so this sequence is a subsequence of A039770. The primitive terms of this sequence are the primes of the form q = x^2 + 1, which are exactly in A002496.
Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.
If q prime = x^2 + 1, phi(q) = x^2, phi(q^(2k+1)) = (x*q^k)^2, and cototient(q) = 1^2, cototient(q^(2k+1)) = (q^k)^2. (End)


LINKS

David A. Corneth, Table of n, a(n) for n = 1..18864 (terms <= 10^11)
Bernard Schott, Subfamilies and subsequences


FORMULA

A000010(a(n)) = (q^(2k))*(q1) and A051953(a(n)) = q^(2k), where q = 1 + x^2 and is prime.


EXAMPLE

a(20) = 3125 = 5^5, q = 5 = 4^2+1 and Phi(3125) = 2500 = 50^2, cototient(3125) = 3125  Phi(3125) = 625 = 25^2.


MATHEMATICA

Select[Range[10^5], And[PrimeNu@ # == 1, IntegerQ@ Sqrt@ EulerPhi@ #] &] (* Michael De Vlieger, Mar 31 2019 *)


PROG

(PARI) isok(m) = (omega(m)==1) && issquare(eulerphi(m)); \\ Michel Marcus, Mar 16 2019
(PARI) upto(n) = {my(res = List([2]), q); forstep(i = 2, sqrtint(n), 2, if(isprime(i^2 + 1), listput(res, i^2 + 1) ) ); q = #res; forstep(i = 3, logint(n, 2), 2, for(j = 1, q, c = res[j]^i; if(c <= n, listput(res, c) , next(2) ) ) ); listsort(res); res } \\ David A. Corneth, Mar 17 2019


CROSSREFS

Cf. A000010, A051953, A039770, A063752, A054754, A334745 (with 2 distinct prime factors), A306908 (with 3 distinct prime factors).
Subsequences: A002496 (primitive primes: m^2+1), A004171 (2^(2k+1)), A013710 (5^(2k+1)), A013722 (17^(2k+1)), A262786 (37^(2k+1)).
Sequence in context: A259580 A316795 A054754 * A093331 A162216 A032158
Adjacent sequences: A054752 A054753 A054754 * A054756 A054757 A054758


KEYWORD

nonn


AUTHOR

Labos Elemer, Apr 25 2000


STATUS

approved



