login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A141293
Primes p of the form 4*k+1 which are not of the form r^2 + 1.
2
13, 29, 41, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 181, 193, 229, 233, 241, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 593, 601, 613, 617, 641, 653, 661, 673, 701, 709, 733, 757, 761, 769
OFFSET
1,1
COMMENTS
Equivalently, prime factors of numbers of the form x^2 + 1 which themselves are not of this form.
Same as A002144 with A002496 removed.
REFERENCES
A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.
FORMULA
a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 10 2017
MATHEMATICA
Complement[Select[4*Range[400]+1, PrimeQ], Select[Range[40]^2+1, PrimeQ]] - T. D. Noe, Jun 27 2008
Select[Prime[Range[200]], IntegerQ[(#-1)/4]&&!IntegerQ[Sqrt[#-1]]&] (* Harvey P. Dale, Jan 04 2015 *)
PROG
(PARI) forprime(p=3, 1000, if(p%4==1&&!issquare((p-1)/4), print1(p, ", "))) \\ Joerg Arndt, Jul 01 2012
(PARI) list(lim)=my(v=List()); forprime(p=2, lim, if(p%4==1, listput(v, p))); v=setminus(Set(v), vector(sqrtint(lim\4), i, 4*i^2+1)) \\ Charles R Greathouse IV, Jun 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
A.K. Devaraj, Jun 23 2008
EXTENSIONS
Corrected and extended by T. D. Noe and N. J. A. Sloane, Jun 27 2008
STATUS
approved