login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096309
a(1)=1; for n > 1, a(n) is the number of levels in the "stacked" prime number factorization of n (prime number factorization of the exponents if necessary and so on ...).
3
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2
OFFSET
1,4
COMMENTS
For n > 1: a(n)=1 iff n squarefree.
Sequence A185102 is a (better?) variant, identical except for A185102(1)=0. - M. F. Hasler, Nov 21 2013
LINKS
EXAMPLE
a(4)=2 because 4=2^2; a(8)=2 because 8=2^3; a(16)=3 because 16=2^(2^2).
a(65536) = a(2^2^2^2) = a(2^^4) = 4 is the first term larger than 3; the index of the first a(n) > 4, n = 2^^5, has 19729 digits. - M. F. Hasler, Nov 21 2013
MATHEMATICA
f[n_Integer] := FactorInteger[n][[All, 2]]; a[n_] := Depth[f[n] //. k_Integer /; k > 1 :> f[k]] - 1; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 20 2013 *)
PROG
(PARI) A096309=n->if(n>1, vecmax(apply(a, factor(n)[, 2])))+1 \\ M. F. Hasler, Nov 21 2013
CROSSREFS
Sequence in context: A088737 A318434 A321455 * A185102 A049419 A299090
KEYWORD
easy,nonn
AUTHOR
Franz Vrabec, Jun 27 2004
EXTENSIONS
More terms from Jean-François Alcover, Nov 20 2013
STATUS
approved