login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1; for n > 1, a(n) is the number of levels in the "stacked" prime number factorization of n (prime number factorization of the exponents if necessary and so on ...).
3

%I #14 Nov 18 2017 20:59:36

%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,3,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1,

%T 1,2,1,1,1,2,1,1,1,2,2,1,1,3,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,2,1,1,1,2,

%U 1,1,1,2,1,1,2,2,1,1,1,3,3,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,2,2,2

%N a(1)=1; for n > 1, a(n) is the number of levels in the "stacked" prime number factorization of n (prime number factorization of the exponents if necessary and so on ...).

%C For n > 1: a(n)=1 iff n squarefree.

%C Sequence A185102 is a (better?) variant, identical except for A185102(1)=0. - _M. F. Hasler_, Nov 21 2013

%H Antti Karttunen, <a href="/A096309/b096309.txt">Table of n, a(n) for n = 1..65537</a>

%e a(4)=2 because 4=2^2; a(8)=2 because 8=2^3; a(16)=3 because 16=2^(2^2).

%e a(65536) = a(2^2^2^2) = a(2^^4) = 4 is the first term larger than 3; the index of the first a(n) > 4, n = 2^^5, has 19729 digits. - _M. F. Hasler_, Nov 21 2013

%t f[n_Integer] := FactorInteger[n][[All, 2]]; a[n_] := Depth[f[n] //. k_Integer /; k > 1 :> f[k]] - 1; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 20 2013 *)

%o (PARI) A096309=n->if(n>1,vecmax(apply(a,factor(n)[,2])))+1 \\ _M. F. Hasler_, Nov 21 2013

%Y Cf. A087049, A185102.

%K easy,nonn

%O 1,4

%A _Franz Vrabec_, Jun 27 2004

%E More terms from _Jean-François Alcover_, Nov 20 2013