

A299090


Number of "digits" in the binary representation of the multiset of prime factors of n.


3



0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(n) is also the binary weight of the largest multiplicity in the multiset of prime factors of n.
Any finite multiset m has a unique binary representation as a finite word bin(m) = s_k..s_1 such that: (1) each "digit" s_i is a finite set, (2) the leading term s_k is nonempty, and (3) m = 1*s_1 + 2*s_2 + 4*s_3 + 8*s_4 + ... + 2^(k1)*s_k where + is multiset union, 1*S = S as a multiset, and n*S = 1*S + (n1)*S for n > 1. The word bin(m) can be thought of as a finite 2adic set. For example,
bin({1,1,1,1,2,2,3,3,3}) = {1}{2,3}{3},
bin({1,1,1,1,1,2,2,2,2}) = {1,2}{}{1},
bin({1,1,1,1,1,2,2,2,3}) = {1}{2}{1,2,3}.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537
Index entries for sequences computed from exponents in factorization of n


FORMULA

a(n) = A070939(A051903(n)), n>1.
If m is a set then bin(m) has only one "digit" m; so a(n) = 1 if n is squarefree.
If m is of the form n*{x} then bin(m) is obtained by listing the binary digits of n and replacing 0 > {}, 1 > {x}; so a(p^n) = binary weight of n.


EXAMPLE

36 has prime factors {2,2,3,3} with binary representation {2,3}{} so a(36) = 2.
Binary representations of the prime multisets of each positive integer begin: {}, {2}, {3}, {2}{}, {5}, {2,3}, {7}, {2}{2}, {3}{}, {2,5}, {11}, {2}{3}, {13}, {2,7}, {3,5}, {2}{}{}.


MATHEMATICA

Table[If[n===1, 0, IntegerLength[Max@@FactorInteger[n][[All, 2]], 2]], {n, 100}]


PROG

(PARI)
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A299090(n) = if(1==n, 0, #binary(A051903(n))); \\ Antti Karttunen, Jul 29 2018


CROSSREFS

Cf. A001511, A051903, A052409, A070939, A112798.
Sequence in context: A096309 A185102 A049419 * A046951 A159631 A050377
Adjacent sequences: A299087 A299088 A299089 * A299091 A299092 A299093


KEYWORD

nonn,base


AUTHOR

Gus Wiseman, Feb 02 2018


EXTENSIONS

More terms from Antti Karttunen, Jul 29 2018


STATUS

approved



