login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299089
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 26, 26, 8, 16, 88, 92, 88, 16, 32, 298, 354, 354, 298, 32, 64, 1012, 1387, 1617, 1387, 1012, 64, 128, 3440, 5470, 7722, 7722, 5470, 3440, 128, 256, 11700, 21484, 36667, 46456, 36667, 21484, 11700, 256, 512, 39804, 84425, 173524, 273360, 273360
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4.......8.......16........32..........64..........128
...2.....8.....26......88......298......1012........3440........11700
...4....26.....92.....354.....1387......5470.......21484........84425
...8....88....354....1617.....7722.....36667......173524.......822065
..16...298...1387....7722....46456....273360.....1598956......9400094
..32..1012...5470...36667...273360...2001653....14514670....105596164
..64..3440..21484..173524..1598956..14514670...129999453...1166134994
.128.11700..84425..822065..9400094.105596164..1166134994..12899638332
.256.39804.331838.3897261.55296169.769538056.10493701031.143316205219
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5)
k=3: [order 17] for n>19
k=4: [order 64] for n>66
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..1. .0..0..0..1. .0..0..1..1. .0..1..1..1
..1..0..0..0. .0..1..1..1. .1..1..1..0. .1..1..1..0. .1..0..0..0
..0..1..0..0. .0..1..1..0. .1..1..1..1. .1..1..0..1. .0..0..0..0
..1..0..0..0. .0..1..1..1. .1..1..0..0. .1..1..1..1. .1..1..0..0
..0..0..1..1. .0..0..0..1. .0..0..1..0. .0..0..1..0. .1..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A298189.
Sequence in context: A301841 A302069 A298195 * A299345 A299852 A299008
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 02 2018
STATUS
approved