login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A298195
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
8
1, 2, 2, 4, 8, 4, 8, 26, 26, 8, 16, 88, 92, 88, 16, 32, 298, 354, 354, 298, 32, 64, 1012, 1385, 1609, 1385, 1012, 64, 128, 3440, 5450, 7629, 7629, 5450, 3440, 128, 256, 11700, 21362, 35969, 45143, 35969, 21362, 11700, 256, 512, 39804, 83805, 168880, 261255, 261255
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4.......8.......16........32.........64..........128
...2.....8.....26......88......298......1012.......3440........11700
...4....26.....92.....354.....1385......5450......21362........83805
...8....88....354....1609.....7629.....35969.....168880.......794047
..16...298...1385....7629....45143....261255....1504330......8713831
..32..1012...5450...35969...261255...1863192...13176123.....93671028
..64..3440..21362..168880..1504330..13176123..114087318....992267592
.128.11700..83805..794047..8713831..93671028..992267592..10570868743
.256.39804.328854.3736043.50485951.666846880.8658476297.113136519433
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5)
k=3: [order 17] for n>19
k=4: [order 64] for n>66
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..0..1..0
..1..0..1..0. .0..1..0..1. .1..0..0..1. .0..0..0..1. .0..1..0..0
..1..0..1..0. .0..1..1..1. .1..1..0..1. .1..0..1..1. .1..0..1..0
..0..0..1..0. .0..0..0..1. .0..0..0..0. .1..0..0..0. .0..1..1..0
..0..1..1..0. .0..1..0..1. .1..1..1..1. .1..0..1..0. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Sequence in context: A299942 A301841 A302069 * A299089 A299345 A299852
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 14 2018
STATUS
approved