%I
%S 1,2,2,4,8,4,8,26,26,8,16,88,92,88,16,32,298,354,354,298,32,64,1012,
%T 1385,1609,1385,1012,64,128,3440,5450,7629,7629,5450,3440,128,256,
%U 11700,21362,35969,45143,35969,21362,11700,256,512,39804,83805,168880,261255,261255
%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
%C Table starts
%C ...1.....2......4.......8.......16........32.........64..........128
%C ...2.....8.....26......88......298......1012.......3440........11700
%C ...4....26.....92.....354.....1385......5450......21362........83805
%C ...8....88....354....1609.....7629.....35969.....168880.......794047
%C ..16...298...1385....7629....45143....261255....1504330......8713831
%C ..32..1012...5450...35969...261255...1863192...13176123.....93671028
%C ..64..3440..21362..168880..1504330..13176123..114087318....992267592
%C .128.11700..83805..794047..8713831..93671028..992267592..10570868743
%C .256.39804.328854.3736043.50485951.666846880.8658476297.113136519433
%H R. H. Hardin, <a href="/A298195/b298195.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1)
%F k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5)
%F k=3: [order 17] for n>19
%F k=4: [order 64] for n>66
%e Some solutions for n=5 k=4
%e ..0..0..1..0. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..0..1..0
%e ..1..0..1..0. .0..1..0..1. .1..0..0..1. .0..0..0..1. .0..1..0..0
%e ..1..0..1..0. .0..1..1..1. .1..1..0..1. .1..0..1..1. .1..0..1..0
%e ..0..0..1..0. .0..0..0..1. .0..0..0..0. .1..0..0..0. .0..1..1..0
%e ..0..1..1..0. .0..1..0..1. .1..1..1..1. .1..0..1..0. .0..0..0..0
%Y Column 1 is A000079(n-1).
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Jan 14 2018
|