login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298197
Number of Eulerian cycles in the graph C_4 X C_n.
3
16, 2368, 207496, 15639936, 1116199200, 77643032832, 5318859987584, 360460090519552, 24225364155392512, 1617040095771160576, 107318756823774554112, 7087408485751290626048, 466051677657117523779584, 30530955397986792883159040, 1993388935416599069605396480
OFFSET
1,1
COMMENTS
a(n) is divisible by 2^n.
LINKS
Eric Weisstein's World of Mathematics, Eulerian Cycle
Eric Weisstein's World of Mathematics, Torus Grid Graph
Index entries for linear recurrences with constant coefficients, signature (242, -24508, 1377576, -48319952, 1127281504, -18164303168, 206564578176, -1673816120832, 9654475382784, -39144748253184, 108479226544128, -194648732467200, 202715666841600, -92493840384000).
FORMULA
G.f.: 8*x*(2 - 188*x + 3321*x^2 + 177454*x^3 - 9041760*x^4 + 171251312*x^5 - 1590178736*x^6 + 5597941472*x^7 + 25225706112*x^8 - 343839085056*x^9 + 1466120669184*x^10 - 2913427243008*x^11 + 2262128394240*x^12)/((1 - 2*x)*(1 - 4*x)*(1 - 6*x)*(1 - 10*x)^2*(1 - 12*x)^2*(1 - 30*x)*(1 - 24*x + 64*x^2)*(1 - 66*x + 264*x^2)^2).
a(n) = 242*a(n-1) - 24508*a(n-2) + 1377576*a(n-3) - 48319952*a(n-4) + 1127281504*a(n-5) - 18164303168*a(n-6) + 206564578176*a(n-7) - 1673816120832*a(n-8) + 9654475382784*a(n-9) - 39144748253184*a(n-10) + 108479226544128*a(n-11) - 194648732467200*a(n-12) + 202715666841600*a(n-13) - 92493840384000*a(n-14). - Eric W. Weisstein, Jan 15 2018
MATHEMATICA
Table[1/4 (-4 (12 - 4 Sqrt[5])^n - 4 (12 + 4 Sqrt[5])^n + 2^n (-3 + 3 2^(1 + n) + 3^n + 5^n - 15^n) + 2 (33 - 5 Sqrt[33])^n + 2 (33 + 5 Sqrt[33])^n) + 1/330 (-11 2^n (6 5^n + 5 6^n) + 50 (33 - 5 Sqrt[33])^n + 50 (33 + 5 Sqrt[33])^n) n, {n, 20}] // Expand (* Eric W. Weisstein, Jan 15 2018 *)
LinearRecurrence[{242, -24508, 1377576, -48319952, 1127281504, -18164303168, 206564578176, -1673816120832, 9654475382784, -39144748253184, 108479226544128, -194648732467200, 202715666841600, -92493840384000}, {16, 2368, 207496, 15639936, 1116199200, 77643032832, 5318859987584, 360460090519552, 24225364155392512, 1617040095771160576, 107318756823774554112, 7087408485751290626048, 466051677657117523779584, 30530955397986792883159040}, 20] (* Eric W. Weisstein, Jan 15 2018 *)
CoefficientList[Series[8 (2 - 188 x + 3321 x^2 + 177454 x^3 - 9041760 x^4 + 171251312 x^5 - 1590178736 x^6 + 5597941472 x^7 + 25225706112 x^8 - 343839085056 x^9 + 1466120669184 x^10 - 2913427243008 x^11 + 2262128394240 x^12)/((1 - 2 x) (1 - 4 x) (1 - 6 x) (1 - 10 x)^2 (1 - 12 x)^2 (1 - 30 x) (1 - 24 x + 64 x^2) (1 - 66 x + 264 x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 15 2018 *)
CROSSREFS
Row 4 of A298117.
Sequence in context: A241368 A069443 A227658 * A016876 A221253 A379610
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 14 2018
STATUS
approved