login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A330752
Number of values of k, 1 <= k <= n, with A328478(k) = A328478(n), where A328478(n) gives the remainder when all maximal primorial divisors of n (from the largest to smallest) have been divided out.
2
1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 3, 1, 9, 1, 10, 1, 2, 1, 11, 1, 2, 1, 4, 1, 4, 1, 3, 1, 2, 1, 12, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 13, 1, 2, 1, 14, 1, 4, 1, 3, 1, 2, 1, 15, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 5, 1, 3, 1, 3, 1, 2, 1, 16, 1, 2, 1, 3, 1, 4, 1, 5, 1
OFFSET
1,2
COMMENTS
Ordinal transform of A328478.
LINKS
MATHEMATICA
A111701[n_] := A111701[n] = Block[{m = n, k = 1}, While[IntegerQ[m/Prime[k]], m = m/Prime[k]; k++]; m];
A328478[n_] := A328478[n] = If[A111701[n] == n, n, A328478[A111701[n]]];
Module[{b}, b[_] = 0;
a[n_] := With[{t = A328478[n]}, b[t] = b[t] + 1]];
Array[a, 105] (* Jean-François Alcover, Jan 11 2022, after Robert G. Wilson v in A111701 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
A328478(n) = { my(u=A111701(n)); if(u==n, return(n), return(A328478(u))); };
v330752 = ordinal_transform(vector(up_to, n, A328478(n)));
A330752(n) = v330752[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2019
STATUS
approved