login
A317746
Irregular triangle read by rows in which row n lists the divisors k of n such that k^n + n^k == 0 (mod k + n).
0
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 3, 6, 1, 7, 1, 2, 8, 1, 3, 9, 1, 10, 1, 11, 1, 4, 6, 12, 1, 13, 1, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 6, 9, 18, 1, 19, 1, 5, 20, 1, 3, 7, 21, 1, 22, 1, 23, 1, 3, 8, 12, 24, 1, 5, 25, 1, 13, 26, 1, 3, 9, 27, 1, 4, 28, 1, 29, 1, 6, 10, 15, 30
OFFSET
1,3
COMMENTS
Triangle read by rows in which row n lists the type-1 divisors of n. For each divisor k of n, call k a type-r divisor of n if (r*k)^n + n^(r*k) == 0 (mod r*k + n), r >= 1.
Triangle read by rows in which row n lists the smallest types r of divisor k of n such that (r*k)^n + n^(r*k) == 0 (mod r*k + n) begins:
1;
1, 1;
1, 1;
1, 2, 1;
1, 1;
1, 3, 1, 1;
1, 1;
1, 1, 2, 1;
1, 1, 1;
1, 3, 2, 1;
1, 1;
1, 2, 3, 1, 1, 1;
..., where the total number of type-1 divisors of n is the sum of the number of all trivial divisors of n and a certain number of nontrivial divisors of n, namely: 1+0, 2+0, 2+0, 2+0, 2+0, 2+1, 2+0, 2+1, 2+1, 2+0, 2+0, 2+2, ...
EXAMPLE
Triangle begins:
1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 3, 6;
1, 7;
1, 2, 8;
1, 3, 9;
1, 10;
1, 11;
1, 4, 6, 12;
MATHEMATICA
a[n_] := Select[ Divisors@ n, Mod[PowerMod[#, n, # + n] + PowerMod[n, #, # + n], # + n] == 0 &]; Array[a, 30] // Flatten (* Robert G. Wilson v, Aug 06 2018 *)
PROG
(Magma) [[k: k in [ 1..n] | Denominator(n/k) eq 1 and Denominator((k^n+n^k)/(k+n)) eq 1]: n in [1..30]]
CROSSREFS
Sequence in context: A077609 A077610 A329534 * A364449 A228179 A322313
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved