login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222267
The number of distinct lines defined by an n X n X n grid of points.
6
28, 253, 1492, 5485, 17092, 41905, 95140, 191773, 364420, 638785, 1085500, 1745389, 2743084, 4136257, 6101740, 8747821, 12377764, 17066737, 23287564, 31174813, 41276548, 53767873, 69544324, 88722973, 112450132, 140859361, 175324636
OFFSET
2,1
COMMENTS
Given a cubic n X n X n grid of points, a(n) is the number of distinct lines produced by constructing a line through every pair of points.
Define the grid as consisting of the set of n^3 distinct points whose x, y and z coordinates are all integers in [0..n-1]. Assign to each grid point a distinct index j = x + n*y + n^2*z. For each pair of grid points P_A and P_B (where P_A is the one with the lower index j), let L be the line that passes through both grid points, and let S be the segment of that line from P_A to P_B. Examine each of the C(n^3,2) pairs of distinct grid points P_A and P_B; a(n) is the number of those pairs for which S does not pass through any other grid points between P_A and P_B, nor does L pass through any other grid points beyond the P_A end of S. - Jon E. Schoenfield, Sep 21 2013
Conjecture: a(n) is approximately 0.3639537*n^6, with a relative error of about 10^-5 when n is near 200. - Clive Tooth, Mar 03 2016
LINKS
Clive Tooth, Table of n, a(n) for n = 2..200 (using a method of Haukkanen & Merikoski) [Terms 2 through 70 were computed by Jon E. Schoenfield]
P. Haukkanen, J. K. Merikoski, Some formulas for numbers of line segments and lines in a rectangular grid, arXiv:1108.1041 [math.CO], 2011.
EXAMPLE
Each of the 28 pairs of points on a 2 X 2 X 2 grid of points defines a distinct line, so a(2) = 28.
Of the 351 pairs of points on a 3 X 3 X 3 grid, there are only 253 distinct lines, so a(3) = 253.
MATHEMATICA
mq[{x1_, y1_}, {x2_, y2_}] := If[x1 == x2, {x1}, {y2 - y1, x2*y1 - x1*y2}/(x2 - x1)]; two[n_] := Block[{p = Tuples[Range@n, 2]},
Length@Union@Flatten[Table[mq[p[[i]], p[[j]]], {i, 2, n^2}, {j, i - 1}], 1]]; coef[a_, b_] := Block[{d = b - a}, If[d[[1]] == 0, {0}, d *= Sign@d[[1]]/GCD @@ d; {a - d*a[[1]]/d[[1]], d}]]; a[n_] := Block[{p = Tuples[Range@n, 3]}, n*two[n] - 1 + Length@Union@ Flatten[Table[coef[p[[i]], p[[j]]], {i, 2, n^3}, {j, i - 1}], 1]]; Table[v = a[n]; Print@v; v, {n, 2, 12}] (* Giovanni Resta, Feb 14 2013 *)
CROSSREFS
Cf. A018808, A222268 (number of intersection points of these lines).
Sequence in context: A092341 A042522 A025517 * A240003 A225242 A189606
KEYWORD
nonn,nice
AUTHOR
Clive Tooth, Feb 13 2013
EXTENSIONS
a(6)-a(12) from Giovanni Resta, Feb 14 2013
a(13)-a(28) from Jon E. Schoenfield, Sep 16 2013
STATUS
approved