OFFSET
1,4
FORMULA
a(n) = floor(n/2)*floor(n/2-1)*(n-1)!. Proof: There are floor(n/2)*floor(n/2-1) pairs (r, s) with r and s even and distinct. For each pair, there are n-1 places it can occur in a permutation and (n-2)! possible arrangements of the other numbers.
Sum_{n>=4} 1/a(n) = CoshIntegral(1) - gamma - 3*e + 8 = A099284 - A001620 - 3*A001113 + 8. - Amiram Eldar, Jan 22 2023
MATHEMATICA
a[n_] := Floor[n/2]*Floor[n/2 - 1]*(n - 1)!; Array[a, 25] (* Amiram Eldar, Jan 22 2023 *)
PROG
(PARI) a(n) = n\2 * (n\2-1)*(n-1)! ; \\ Michel Marcus, Aug 29 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved