login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154851
Symmetrical triangular sequence of Fibonacci numbers (A000045): p(x,n) = Product[1 + Fibonacci[i]*x, {i, 0, n}] + x^n*Product[1 + Fibonacci[i]/x, {i, 0, n}].
0
2, 2, 2, 2, 4, 2, 3, 9, 9, 3, 7, 24, 34, 24, 7, 31, 103, 154, 154, 103, 31, 241, 778, 1055, 1036, 1055, 778, 241, 3121, 10127, 12957, 10083, 10083, 12957, 10127, 3121, 65521, 215148, 274724, 184020, 117846, 184020, 274724, 215148, 65521, 2227681, 7378804
OFFSET
0,1
COMMENTS
Row sums are:
{2, 4, 8, 24, 96, 576, 5184, 72576, 1596672, 55883520, 3129477120,...}.
If you take:
with H(i) as quantum Magnetic fields:
Product[1+H(i)*x,{i,0,n}]
The sequence that results is Stirling number like.
Making that symmetrical:
p(x,n)=Product[1+H(i)*x,{i,0,n}]+x^n*Product[1+H(i)/x,{i,0,n}]
Now, you can put in just about any a(n) sequence and get a symmetrical
polynomial back.
FORMULA
p(x,n) = Product[1 + Fibonacci[i]*x, {i, 0, n}] + x^n*Product[1 + Fibonacci[i]/x, {i, 0, n}];
t(n,m)=coefficients(p(x,n))
EXAMPLE
{{2},
{2, 2},
{2, 4, 2},
{3, 9, 9, 3},
{7, 24, 34, 24, 7},
{31, 103, 154, 154, 103, 31},
{241, 778, 1055, 1036, 1055, 778, 241},
{3121, 10127, 12957, 10083, 10083, 12957, 10127, 3121},
{65521, 215148, 274724, 184020, 117846, 184020, 274724, 215148, 65521},
{2227681, 7378804, 9521213, 6204407, 2609655, 2609655, 6204407, 9521213, 7378804, 2227681},
{122522401, 408057203, 530891673, 348306220, 128955206, 52011714, 128955206, 348306220, 530891673, 408057203, 122522401}
MATHEMATICA
Clear[p, x, n]; p[x_, n_] = Product[1 + Fibonacci[i]*x, {i, 0, n}] + x^n*Product[1 + Fibonacci[i]/x, {i, 0, n}]; \! Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Jan 16 2009
STATUS
approved