Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 26 2018 12:26:08
%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,8,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,8,1,1,
%T 1,4,1,1,1,2,1,1,1,2,2,1,1,8,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,16,1,1,1,2,
%U 1,1,1,4,1,1,2,2,1,1,1,8,8,1,1,2,1,1,1,2,1,2,1,2,1,1,1,8,1,2,2,4,1,1,1,2,1
%N Multiplicative with a(p^n) = 2^A011371(n); denominators for certain "Dirichlet Square Roots" sequences.
%C a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)), with f(1) = 1, where b(n) is a sequence like A034444 and A037445.
%C Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
%C The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
%C Numerators Dirichlet convolution of numerator(n)/a(n) yields
%C ------- -----------
%C A317933 A034444
%C A317941 A037445
%C A317940 A046644
%H Antti Karttunen, <a href="/A317934/b317934.txt">Table of n, a(n) for n = 1..65537</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_convolution">Dirichlet convolution</a>
%F a(n) = 2^A317946(n).
%F a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1, where b is A034444, A037445 or A046644 for example.
%o (PARI)
%o A011371(n) = (n - hammingweight(n));
%o A317934(n) = factorback(apply(e -> 2^A011371(e),factor(n)[,2]));
%Y Cf. A011371, A034444, A317940, A317941, A317946.
%Y Cf. A317933, A317940, A317941 (numerator-sequences).
%Y Cf. also A046644, A299150, A299152, A317832, A317932, A317926 (for denominator sequences of other similar constructions).
%K nonn,frac,mult
%O 1,4
%A _Antti Karttunen_, Aug 12 2018