OFFSET
0,4
COMMENTS
a(even) = number of trailing binary zeros;
a(odd) = number of trailing binary ones.
For n>0, power of 2 associated with n^2 + n, e.g. n=4 gives 20, so a(4)=2. - Jon Perry, Sep 12 2014
LINKS
James Spahlinger, Table of n, a(n) for n = 0..10000
Francis Laclé, 2-adic parity explorations of the 3n+ 1 problem, hal-03201180v2 [cs.DM], 2021.
FORMULA
a(n) = A050603(n-1) for n>0;
a(2*n + n mod 2) = a(n) + 1.
For n>0: a(n) = A007814(n + n mod 2).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - Amiram Eldar, Sep 15 2022
MAPLE
A136480 := proc(n)
if n = 0 then
1;
else
A007814(n*(n+1)) ;
end if;
end proc:
seq( A136480(n), n=0..80) ; # R. J. Mathar, Mar 20 2023
MATHEMATICA
Length[Last[Split[IntegerDigits[#, 2]]]]&/@Range[0, 140] (* Harvey P. Dale, Mar 31 2011 *)
PROG
(PARI) a(n)=if (n, valuation(n+n%2, 2), 1) \\ Charles R Greathouse IV, Oct 14 2013
(Haskell)
a136480 0 = 1
a136480 n = a007814 $ n + mod n 2 -- Reinhard Zumkeller, Jul 22 2014
(JavaScript)
for (n=1; n<120; n++) {
m=n*n+n;
c=0;
while (m%2==0) {m/=2; c++; }
document.write(c+", ");
} // Jon Perry, Sep 12 2014
(Python)
def A136480(n): return (~(m:=n+(n&1))& m-1).bit_length() # Chai Wah Wu, Jul 08 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Dec 31 2007
STATUS
approved