login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136480
Number of trailing equal digits in binary representation of n.
21
1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3
OFFSET
0,4
COMMENTS
a(even) = number of trailing binary zeros;
a(odd) = number of trailing binary ones.
For n>0, power of 2 associated with n^2 + n, e.g. n=4 gives 20, so a(4)=2. - Jon Perry, Sep 12 2014
FORMULA
a(n) = A050603(n-1) for n>0;
a(2*n + n mod 2) = a(n) + 1.
For n>0: a(n) = A007814(n + n mod 2).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - Amiram Eldar, Sep 15 2022
a(n) = A007814(A002378(n)), n>0. - R. J. Mathar, Mar 20 2023
MAPLE
A136480 := proc(n)
if n = 0 then
1;
else
A007814(n*(n+1)) ;
end if;
end proc:
seq( A136480(n), n=0..80) ; # R. J. Mathar, Mar 20 2023
MATHEMATICA
Length[Last[Split[IntegerDigits[#, 2]]]]&/@Range[0, 140] (* Harvey P. Dale, Mar 31 2011 *)
PROG
(PARI) a(n)=if (n, valuation(n+n%2, 2), 1) \\ Charles R Greathouse IV, Oct 14 2013
(Haskell)
a136480 0 = 1
a136480 n = a007814 $ n + mod n 2 -- Reinhard Zumkeller, Jul 22 2014
(JavaScript)
for (n=1; n<120; n++) {
m=n*n+n;
c=0;
while (m%2==0) {m/=2; c++; }
document.write(c+", ");
} // Jon Perry, Sep 12 2014
(Python)
def A136480(n): return (~(m:=n+(n&1))& m-1).bit_length() # Chai Wah Wu, Jul 08 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Dec 31 2007
STATUS
approved