login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of trailing equal digits in binary representation of n.
21

%I #47 Mar 20 2023 05:30:48

%S 1,1,1,2,2,1,1,3,3,1,1,2,2,1,1,4,4,1,1,2,2,1,1,3,3,1,1,2,2,1,1,5,5,1,

%T 1,2,2,1,1,3,3,1,1,2,2,1,1,4,4,1,1,2,2,1,1,3,3,1,1,2,2,1,1,6,6,1,1,2,

%U 2,1,1,3,3,1,1,2,2,1,1,4,4,1,1,2,2,1,1,3,3,1,1,2,2,1,1,5,5,1,1,2,2,1,1,3,3

%N Number of trailing equal digits in binary representation of n.

%C a(even) = number of trailing binary zeros;

%C a(odd) = number of trailing binary ones.

%C For n>0, power of 2 associated with n^2 + n, e.g. n=4 gives 20, so a(4)=2. - _Jon Perry_, Sep 12 2014

%H James Spahlinger, <a href="/A136480/b136480.txt">Table of n, a(n) for n = 0..10000</a>

%H Francis Laclé, <a href="https://hal.archives-ouvertes.fr/hal-03201180v2">2-adic parity explorations of the 3n+ 1 problem</a>, hal-03201180v2 [cs.DM], 2021.

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A050603(n-1) for n>0;

%F a(2*n + n mod 2) = a(n) + 1.

%F For n>0: a(n) = A007814(n + n mod 2).

%F Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - _Amiram Eldar_, Sep 15 2022

%F a(n) = A007814(A002378(n)), n>0. - _R. J. Mathar_, Mar 20 2023

%p A136480 := proc(n)

%p if n = 0 then

%p 1;

%p else

%p A007814(n*(n+1)) ;

%p end if;

%p end proc:

%p seq( A136480(n),n=0..80) ; # _R. J. Mathar_, Mar 20 2023

%t Length[Last[Split[IntegerDigits[#,2]]]]&/@Range[0,140] (* _Harvey P. Dale_, Mar 31 2011 *)

%o (PARI) a(n)=if (n, valuation(n+n%2,2), 1) \\ _Charles R Greathouse IV_, Oct 14 2013

%o (Haskell)

%o a136480 0 = 1

%o a136480 n = a007814 $ n + mod n 2 -- _Reinhard Zumkeller_, Jul 22 2014

%o (JavaScript)

%o for (n=1;n<120;n++) {

%o m=n*n+n;

%o c=0;

%o while (m%2==0) {m/=2;c++;}

%o document.write(c+", ");

%o } // _Jon Perry_, Sep 12 2014

%o (Python)

%o def A136480(n): return (~(m:=n+(n&1))& m-1).bit_length() # _Chai Wah Wu_, Jul 08 2022

%Y Cf. A007814, A050603, A094267, A163575, A001511, A039963 (parity).

%K nonn,base,easy

%O 0,4

%A _Reinhard Zumkeller_, Dec 31 2007