|
|
A285406
|
|
Base-2 logarithm of denominator of Sum_{k=0..n^2-1}((-1)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k)))/n).
|
|
5
|
|
|
0, 5, 15, 28, 46, 68, 94, 123, 158, 195, 236, 283, 333, 387, 445, 506, 574, 643, 716, 794, 875, 961, 1054, 1146, 1244, 1346, 1451, 1562, 1676, 1794, 1916, 2041, 2174, 2307, 2444, 2586, 2731, 2881, 3034, 3193, 3356, 3520, 3690, 3864, 4041, 4227, 4413, 4601, 4796, 4993
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Needed for studying of Wallis-kind products of central binomials.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Log[2, Table[Denominator[Sum[Binomial[2k, k]/4^k, {k, 0, n^2-1}]/n], {n, 1, 50}]]
Log[2, Denominator[Table[2^(1-2 n^2) n Binomial[2 n^2, n^2], {n, 1, 50}]]] (* Ralf Steiner, Apr 22 2017 *)
|
|
PROG
|
(PARI) a(n) = logint(denominator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)), 2); \\ Indranil Ghosh, Apr 27 2017
(PARI) val(n, p) = my(r=0); while(n, r+=n\=p); r
a(n) = 2*n^2-1 - valuation(n, 2) - val(2*n^2, 2) + 2*val(n^2, 2) \\ David A. Corneth, Apr 28 2017
(Python)
from sympy import binomial, integer_log, Integer
def a(n): return integer_log((Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).denominator(), 2)[0] # Indranil Ghosh, Apr 27 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|