login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285406
Base-2 logarithm of denominator of Sum_{k=0..n^2-1} (-1)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k)*n).
5
0, 5, 15, 28, 46, 68, 94, 123, 158, 195, 236, 283, 333, 387, 445, 506, 574, 643, 716, 794, 875, 961, 1054, 1146, 1244, 1346, 1451, 1562, 1676, 1794, 1916, 2041, 2174, 2307, 2444, 2586, 2731, 2881, 3034, 3193, 3356, 3520, 3690, 3864, 4041, 4227, 4413, 4601, 4796, 4993
OFFSET
1,2
COMMENTS
Needed for studying of Wallis-kind products of central binomials.
FORMULA
a(n) = A000523(A285389(n)).
a(n) = A056220(n) - A285717(n) = (2*(n^2)) - A007814(n) - A000120(n^2) - 1. - Antti Karttunen, Apr 28 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984
MATHEMATICA
Log[2, Table[Denominator[Sum[Binomial[2k, k]/4^k, {k, 0, n^2-1}]/n], {n, 1, 50}]]
Log[2, Denominator[Table[2^(1-2 n^2) n Binomial[2 n^2, n^2], {n, 1, 50}]]] (* Ralf Steiner, Apr 22 2017 *)
PROG
(PARI) a(n) = logint(denominator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)), 2); \\ Indranil Ghosh, Apr 27 2017
(PARI) val(n, p) = my(r=0); while(n, r+=n\=p); r
a(n) = 2*n^2-1 - valuation(n, 2) - val(2*n^2, 2) + 2*val(n^2, 2) \\ David A. Corneth, Apr 28 2017
(Python)
from sympy import binomial, integer_log, Integer
def a(n): return integer_log((Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).denominator(), 2)[0] # Indranil Ghosh, Apr 27 2017
(Scheme) (define (A285406 n) (- (* 2 n n) (A007814 n) (A000120 (* n n)) 1)) ;; Antti Karttunen, Apr 28 2017
KEYWORD
nonn
AUTHOR
Ralf Steiner, Apr 18 2017
STATUS
approved