OFFSET
1,2
COMMENTS
Needed for studying of Wallis-kind products of central binomials.
FORMULA
a(n) = A056220(n) - A285717(n) = (2*(n^2)) - A007814(n) - A000120(n^2) - 1. - Antti Karttunen, Apr 28 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984
MATHEMATICA
Log[2, Table[Denominator[Sum[Binomial[2k, k]/4^k, {k, 0, n^2-1}]/n], {n, 1, 50}]]
Log[2, Denominator[Table[2^(1-2 n^2) n Binomial[2 n^2, n^2], {n, 1, 50}]]] (* Ralf Steiner, Apr 22 2017 *)
PROG
(PARI) a(n) = logint(denominator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)), 2); \\ Indranil Ghosh, Apr 27 2017
(PARI) val(n, p) = my(r=0); while(n, r+=n\=p); r
a(n) = 2*n^2-1 - valuation(n, 2) - val(2*n^2, 2) + 2*val(n^2, 2) \\ David A. Corneth, Apr 28 2017
(Python)
from sympy import binomial, integer_log, Integer
def a(n): return integer_log((Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).denominator(), 2)[0] # Indranil Ghosh, Apr 27 2017
(Scheme) (define (A285406 n) (- (* 2 n n) (A007814 n) (A000120 (* n n)) 1)) ;; Antti Karttunen, Apr 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Steiner, Apr 18 2017
STATUS
approved