login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285389
Denominator of Sum_{k=0..n^2-1} (-1)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k))/n.
6
1, 32, 32768, 268435456, 70368744177664, 295147905179352825856, 19807040628566084398385987584, 10633823966279326983230456482242756608, 365375409332725729550921208179070754913983135744, 50216813883093446110686315385661331328818843555712276103168
OFFSET
1,2
COMMENTS
All terms are powers of 2.
Lim_{n->inf} A285388(n)/a(n) = 2/sqrt(Pi).
LINKS
FORMULA
a(n) is the denominator of Sum_{k=0..n^2-1} (binomial(2k,k)/4^k)/n.
a(n) = A000079(A285406(n)).
a(n) = denominator of n*binomial(2*n^2, n^2)/2^(2*n^2 -1). - Ralf Steiner, Apr 22 2017
MATHEMATICA
Table[Denominator[Sum[Binomial[2k, k]/4^k, {k, 0, n^2-1}]/n], {n, 1, 10}]
Denominator[Table[2^(1-2 n^2) n Binomial[2 n^2, n^2], {n, 1, 10}]] (* Ralf Steiner, Apr 22 2017 *)
PROG
(Python)
from sympy import binomial, Integer
def a(n): return (Integer(2)**(1-2*n**2) * Integer(n) * binomial(2*n**2, n**2)).denominator() # Indranil Ghosh, Apr 27 2017
(Magma) [Denominator( n*(n^2+1)*Catalan(n^2)/2^(2*n^2-1) ): n in [1..21]]; // G. C. Greubel, Dec 11 2021
(Sage)
def A285389(n): return 2^(2*n^2 - 1 - (n^2).popcount() - valuation(n, 2))
[A285389(n) for n in (1..20)] # G. C. Greubel, Dec 12 2021
CROSSREFS
Cf. A000079 (powers of 2), A285388 (numerators), A285406 (log base 2; A281264 + A007814), A190732 (2/sqrt(Pi)).
Sequence in context: A016937 A074800 A320859 * A159396 A362175 A221086
KEYWORD
nonn,frac
AUTHOR
Ralf Steiner, Apr 18 2017
STATUS
approved