login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285392
Start with a single cell at coordinates (0, 0), then iteratively subdivide the grid into 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0; a(n) is the number of cells after n iterations.
10
1, 5, 36, 264, 1944, 14328, 105624, 778680, 5740632, 42321528, 312006168, 2300197176, 16957700568, 125016939000, 921660044184, 6794737129656, 50092713636696, 369297577174392, 2722565630929176, 20071519752269880, 147972890199278808, 1090897774766270712
OFFSET
0,2
COMMENTS
Cell configuration converges to a fractal carpet with dimension 1.818...
FORMULA
a(0) = 1, a(1) = 5, a(2) = 36, a(n) = 9*a(n-1) - 12*a(n-2).
G.f.: (1-4*x+3*x^2)/(1-9*x+12*x^2).
a(n) = (2^(-3-n)*((9-sqrt(33))^n*(-13+3*sqrt(33)) + (9+sqrt(33))^n*(13+3*sqrt(33)))) / sqrt(33) for n>0. - Colin Barker, Apr 18 2017
a(n) = (1/4)*([n=0] + (2*sqrt(3))^(n-1)*( 6*sqrt(3)*ChebyshevU(n, 9/(4*sqrt(3))) - 7*ChebyshevU(n-1, 9/(4*sqrt(3))) ) ). - G. C. Greubel, Dec 11 2021
MATHEMATICA
{1}~Join~LinearRecurrence[{9, -12}, {5, 36}, 16]
PROG
(PARI) Vec((1 - x)*(1 - 3*x) / (1 - 9*x + 12*x^2) + O(x^30)) \\ Colin Barker, Apr 18 2017
(Magma) I:=[5, 36]; [1] cat [n le 2 select I[n] else 9*Self(n-1) - 12*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 11 2021
(Sage) [(1/4)*(bool(n==0) + (2*sqrt(3))^(n-1)*( 6*sqrt(3)*chebyshev_U(n, 9/(4*sqrt(3))) - 7*chebyshev_U(n-1, 9/(4*sqrt(3))) ) ) for n in (0..30)] # G. C. Greubel, Dec 11 2021
KEYWORD
nonn,easy
AUTHOR
Peter Karpov, Apr 18 2017
EXTENSIONS
More terms from Colin Barker, Apr 18 2017
STATUS
approved