login
A053398
Nim-values from game of Kopper's Nim.
12
0, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 2, 0, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 0, 2, 0, 2, 0, 3, 0, 3, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1
OFFSET
1,7
COMMENTS
Rows/columns 1-10 are A007814, A050603, A053399, A053384-A053890.
Comment from R. K. Guy: David Singmaster (zingmast(AT)sbu.ac.uk) sent me, about 5 years ago, a game he'd received from Bodo Koppers. It is played with two heaps of beans. The move is to remove one heap and split the other into two nonempty heaps. I'm not sure if Koppers invented it, or got it from elsewhere. I do not think that he analyzed it, but Singmaster did.
LINKS
FORMULA
a(x, y) = place of last zero bit of (x-1) OR (y-1).
T(n,k) = A007814(A003986(n-1,k-1)+1). - Reinhard Zumkeller, Aug 04 2014
PROG
(Haskell)
a053398 :: Int -> Int -> Int
a053398 n k = a007814 $ a003986 (n - 1) (k - 1) + 1
a053398_row n = map (a053398 n) [1..n]
a053398_tabl = map a053398_row [1..]
-- Reinhard Zumkeller, Aug 04 2014
CROSSREFS
Cf. A003986, A007814 (both edges & central terms & minima per row), A000523 (max per row), A245836 (row sums), A003987, A051775.
Sequence in context: A306216 A238451 A205777 * A065833 A245476 A215884
KEYWORD
nonn,tabl,easy,nice
STATUS
approved