login
A079974
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=4, I={0,2}.
1
1, 0, 1, 0, 2, 1, 3, 2, 5, 5, 9, 10, 16, 20, 30, 39, 56, 75, 106, 144, 201, 275, 382, 525, 727, 1001, 1384, 1908, 2636, 3636, 5021, 6928, 9565, 13200, 18222, 25149, 34715, 47914, 66137, 91285, 126001, 173914, 240052, 331336, 457338, 631251, 871304, 1202639
OFFSET
0,5
COMMENTS
Number of compositions (ordered partitions) of n into elements of the set {2,4,5}.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
FORMULA
Recurrence: a(n) = a(n-2)+a(n-4)+a(n-5).
G.f.: -1/(x^5+x^4+x^2-1)
MATHEMATICA
a=b=c=d=0; Table[e=a-d+1; a=b; b=c; c=d; d=e, {n, 25}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011*)
LinearRecurrence[{0, 1, 0, 1, 1}, {1, 0, 1, 0, 2}, 50] (* Harvey P. Dale, Apr 12 2014 *)
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 17 2003
STATUS
approved