login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079974 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=4, I={0,2}. 1
1, 0, 1, 0, 2, 1, 3, 2, 5, 5, 9, 10, 16, 20, 30, 39, 56, 75, 106, 144, 201, 275, 382, 525, 727, 1001, 1384, 1908, 2636, 3636, 5021, 6928, 9565, 13200, 18222, 25149, 34715, 47914, 66137, 91285, 126001, 173914, 240052, 331336, 457338, 631251, 871304, 1202639 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Number of compositions (ordered partitions) of n into elements of the set {2,4,5}.

REFERENCES

D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,1).

FORMULA

Recurrence: a(n) = a(n-2)+a(n-4)+a(n-5) G.f.: -1/(x^5+x^4+x^2-1)

MATHEMATICA

a=b=c=d=0; Table[e=a-d+1; a=b; b=c; c=d; d=e, {n, 25}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011*)

LinearRecurrence[{0, 1, 0, 1, 1}, {1, 0, 1, 0, 2}, 50] (* Harvey P. Dale, Apr 12 2014 *)

CROSSREFS

Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014.

Sequence in context: A035579 A045931 A325193 * A102517 A062951 A263150

Adjacent sequences:  A079971 A079972 A079973 * A079975 A079976 A079977

KEYWORD

nonn

AUTHOR

Vladimir Baltic, Feb 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 06:13 EDT 2020. Contains 333238 sequences. (Running on oeis4.)