login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079971
Number of compositions (ordered partitions) of n into parts 1, 2, and 5.
3
1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 128, 218, 372, 634, 1081, 1843, 3142, 5357, 9133, 15571, 26547, 45260, 77164, 131557, 224292, 382396, 651948, 1111508, 1895013, 3230813, 5508222, 9390983, 16010713, 27296709, 46538235, 79343166, 135272384
OFFSET
0,3
COMMENTS
Number of ways of ordered sequences of nickels, dimes and quarters that add to 5n cents.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2,3}.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
FORMULA
Recurrence: a(n) = a(n-1)+a(n-2)+a(n-5).
G.f.: 1/(1-x-x^2-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((5*k-n)/4)..k} C(j,n-5*k+4*j)*C(k,j). - Vladimir Kruchinin, Dec 15 2011
With offset 1, the INVERT transform of (1 + x + x^4). - Gary W. Adamson, Apr 01 2017
MAPLE
a:= n-> (Matrix(5, (i, j)-> if i+1=j or j=1 and member(i, [1, 2, 5]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2008
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, 1}, {1, 1, 2, 3, 5}, 40] (* Jean-François Alcover, Nov 11 2015 *)
PROG
(Maxima)
a(n):=sum(sum(binomial(j, n-5*k+4*j)*binomial(k, j), j, floor((5*k-n)/4), k), k, 0, n); /* Vladimir Kruchinin, Dec 15 2011 */
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Feb 17 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, Feb 23 2006
STATUS
approved