OFFSET
0,3
COMMENTS
Number of ways of ordered sequences of nickels, dimes and quarters that add to 5n cents.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2,3}.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,1).
FORMULA
Recurrence: a(n) = a(n-1)+a(n-2)+a(n-5).
G.f.: 1/(1-x-x^2-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((5*k-n)/4)..k} C(j,n-5*k+4*j)*C(k,j). - Vladimir Kruchinin, Dec 15 2011
With offset 1, the INVERT transform of (1 + x + x^4). - Gary W. Adamson, Apr 01 2017
MAPLE
a:= n-> (Matrix(5, (i, j)-> if i+1=j or j=1 and member(i, [1, 2, 5]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2008
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, 1}, {1, 1, 2, 3, 5}, 40] (* Jean-François Alcover, Nov 11 2015 *)
PROG
(Maxima)
a(n):=sum(sum(binomial(j, n-5*k+4*j)*binomial(k, j), j, floor((5*k-n)/4), k), k, 0, n); /* Vladimir Kruchinin, Dec 15 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Feb 17 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, Feb 23 2006
STATUS
approved