login
A079969
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={2}.
0
1, 1, 2, 3, 6, 11, 21, 38, 70, 128, 236, 434, 799, 1469, 2702, 4969, 9140, 16811, 30921, 56872, 104604, 192396, 353872, 650872, 1197141, 2201885, 4049898, 7448923, 13700706, 25199527, 46349157, 85249390, 156798074, 288396620, 530444084
OFFSET
0,3
COMMENTS
Number of compositions (ordered partitions) of n into elements of the set {1,2,4,5,6}.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
FORMULA
a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5)+a(n-6).
G.f.: -1/(x^6+x^5+x^4+x^2+x-1).
MATHEMATICA
LinearRecurrence[{1, 1, 0, 1, 1, 1}, {1, 1, 2, 3, 6, 11}, 40] (* Harvey P. Dale, Aug 03 2014 *)
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 19 2003
STATUS
approved