OFFSET
0,6
COMMENTS
The side effect of this calculation is a formula: Integral_{x=0..infinity} exp(-3*x)/(x*(1-exp(-2*x))^2) - 1/(4*x^3) + 1/(4*x^2) - exp(-x)/(24*x) = log(2)/6 + log(A)/2 - 1/24, where A = A074962 is the Glaisher-Kinkelin constant.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
FORMULA
G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(2*j))^2).
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
`if`(irem(d-1, 2)=0, (d-1)/2, 0),
d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # after Alois P. Heinz, Oct 17 2015
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1-x^(2*k+1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 10 2015
STATUS
approved