OFFSET
0,4
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
FORMULA
G.f.: exp(Sum_{j>=1} (-1)^(j+1)/j*x^j/(1 - x^(2*j))^2).
a(n) ~ exp(-Pi^4 / (5184*Zeta(3)) + Pi^2 * n^(1/3) / (8 * 3^(4/3) * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3)* sqrt(Pi) * n^(2/3)).
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 10 2015
STATUS
approved