The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263142 Expansion of Product_{k>=1} 1/(1-x^(5*k-2))^k. 6
 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 2, 1, 3, 2, 1, 6, 2, 5, 6, 2, 11, 6, 7, 15, 6, 21, 15, 12, 30, 15, 34, 35, 22, 58, 35, 59, 70, 43, 108, 76, 95, 142, 85, 187, 157, 161, 263, 174, 318, 307, 274, 480, 336, 534, 583, 479, 836, 649, 879, 1068, 840, 1433, 1211 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015 FORMULA G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(5*j))^2). a(n) ~ Zeta(3)^(151/900) * exp(d52 - Pi^4/(2700*Zeta(3)) + Pi^2 * 2^(2/3) * 5^(2/3) * n^(1/3) / (150 * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * 2^(-2/3) * 5^(-2/3) * n^(2/3)) / (2^(299/900) * 5^(151/450) * sqrt(3*Pi) * n^(601/900)), where d52 = A263179 = Integral_{x=0..infinity} exp(-3*x)/(x*(1 - exp(-5*x))^2) - 1/(25*x^3) - 2/(25*x^2) + 1/(300*x*exp(x)) = -0.187803021063745858976409657887070138806... . MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*       `if`(irem(d+5, 5, 'r')=3, r, 0), d=divisors(j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..100); # after Alois P. Heinz MATHEMATICA nmax = 100; CoefficientList[Series[Product[1/(1-x^(5k-2))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(5*j))^2, {j, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A263141, A263143, A263144, A263179, A263146, A262877. Sequence in context: A071432 A194508 A240808 * A025253 A281228 A284575 Adjacent sequences:  A263139 A263140 A263141 * A263143 A263144 A263145 KEYWORD nonn AUTHOR Vaclav Kotesovec, Oct 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 18:04 EDT 2021. Contains 342852 sequences. (Running on oeis4.)