login
A263151
Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its focal length: sqrt(8) + log(3 + sqrt(8)).
0
4, 5, 9, 1, 1, 7, 4, 2, 9, 8, 7, 8, 5, 2, 7, 6, 1, 4, 8, 0, 6, 8, 5, 9, 6, 0, 9, 8, 3, 7, 8, 9, 8, 0, 7, 7, 5, 1, 9, 5, 6, 6, 4, 4, 0, 7, 2, 7, 7, 1, 6, 6, 9, 6, 7, 8, 5, 9, 9, 5, 0, 6, 9, 3, 2, 8, 8, 2, 1, 9, 3, 2, 5, 3, 6, 8, 2, 6, 6, 2, 5, 3, 3, 6, 8, 1, 8, 8, 8, 5, 2, 4, 7, 5, 7, 9, 5, 2, 3, 1, 1, 8
OFFSET
1,1
COMMENTS
Twice the universal parabolic constant A103710.
EXAMPLE
4.591174298785276148068596098378980775195664407277166967859950693...
MATHEMATICA
First@ RealDigits[N[# + Log[3 + #] &@ Sqrt@ 8, 102]] (* Michael De Vlieger, Oct 11 2015 *)
PROG
(PARI) sqrt(8) + log(3 + sqrt(8)) \\ Michel Marcus, Oct 11 2015
CROSSREFS
Equals twice A103710. Equals A010466 + A244920.
Sequence in context: A055497 A194419 A175380 * A366185 A093088 A234430
KEYWORD
cons,easy,nonn
AUTHOR
Martin Janecke, Oct 11 2015
STATUS
approved