login
A306556
Integers that appear as (unreduced) numerators of segment endpoints when a ternary Cantor set is created.
7
0, 1, 2, 3, 6, 7, 8, 9, 18, 19, 20, 21, 24, 25, 26, 27, 54, 55, 56, 57, 60, 61, 62, 63, 72, 73, 74, 75, 78, 79, 80, 81, 162, 163, 164, 165, 168, 169, 170, 171, 180, 181, 182, 183, 186, 187, 188, 189, 216, 217, 218, 219, 222, 223, 224, 225, 234, 235, 236, 237, 240, 241, 242, 243
OFFSET
1,3
COMMENTS
Nonnegative integers whose ternary representation contains only digits 0 and 2 except for at most a single digit 1 that is followed only by 0's.
Nonnegative integers that can be written in base 3 using only 0's and 2's, allowing the use of the "decimal" point (.) and replacing ....10..0(.) by ....02..2(.)2222...
Note that fractions are not reduced.
List of integers in the closure of the ternary Cantor set under multiplication by 3. The closure is the union of the translated ternary Cantor sets spanning [a(1), a(2)], [a(3), a(4)], [a(5), a(6)], ... . - Peter Munn, Jul 09 2019
LINKS
Georg Cantor, Über unendliche, lineare Punktmannigfaltigkeiten V" [On infinite, linear point-manifolds (sets), Part 5]. Mathematische Annalen (in German). (1883) 21: 545-591.
Paul du Bois-Reymond, Der Beweis des Fundamentalsatzes der Integralrechnung, Mathematische Annalen (in German), (1880), 16, footnote on p. 128.
Eric Weisstein's World of Mathematics, Cantor Set
Wikipedia, Cantor set
FORMULA
a(1)=0, a(2)=1;
a(2^n) = 3^(n-1) for n >= 1;
a(2^n+k) = 2*3^(n-1) + a(k) for 1 <= k <= 2^n.
From Peter Munn, Jul 09 2019: (Start)
a(2n-1) = A005823(n) = A191106(n)-1.
a(2n) = A191106(n) = A005823(n)+1.
a(2n-1) = (A055247(2n-1)-1)/3.
a(2n) = (A055247(2n) +1)/3.
a(2n-1) = (A191108(n)-1)/2.
a(2n) = (A191108(n)+1)/2.
(End)
EXAMPLE
On 1st step we have [0,1/3] U [2/3,3/3] so we get a(1)=0, a(2)=1, a(3)=2, a(4)=3.
On 2nd step we have [0,1/9] U [2/9,3/9] U [6/9,7/9] U [8/9,9/9] so we get in addition a(5)=6, a(6)=7, a(7)=8, a(8)=9.
PROG
(PARI) A306556(n) = {sm=0; while(n>1, ex=floor(log(n)/log(2)); if(n-2^ex==0, sm=sm+3^(ex-1), sm=sm+2*3^(ex-1)); n=n-2^ex); return(sm)}
(PARI) a(n) = n--; fromdigits(binary(n>>1), 3)*2 + (n%2); \\ Kevin Ryde, Apr 23 2021
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Dan Dima, Feb 23 2019
STATUS
approved