|
|
|
|
0, 1, 12, 156, 2360, 41400, 831012, 18832576, 476200944, 13301078400, 406907517500, 13534968927744, 486470108273448, 18790567023993856, 776343673316956500, 34165751933338828800, 1595693034061797583328, 78831769938218360930304, 4107393289066148637198444
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
This is Sum_{all n^(n-2) labeled trees T on n nodes} Sum_{1<=i<j<=n} distance(node i, node j).
a(n) is the total number of all defects in defective parking functions of length n+1. - Alois P. Heinz, Nov 28 2015
With offset 1, a(n) is the number of unordered pairs {f,g} where for some nonempty proper subset S of [n], f:S->S and g:[n]\S->[n]\S. - Geoffrey Critzer, Apr 23 2017
|
|
LINKS
|
Peter Winkler, Mean distance in a tree, in Computational algorithms, operations research and computer science (Burnaby, BC, 1987). Discrete Appl. Math. 27 (1990), no. 1-2, 179-185. [For background information only.]
|
|
FORMULA
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
from math import math
def A036276(n): return sum(comb(n+1, k)*(n+1-k)**(n+1-k)*k**k for k in range(1, (n>>1)+1)) + (comb(n+1, m:=n+1>>1)*m**(n+1)>>1 if n&1 else 0) # Chai Wah Wu, Apr 26 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|