login
A003130
Impedances of an n-terminal network.
(Formerly M4873)
3
1, 12, 157, 1750, 17446, 164108, 1505099, 13720902, 125782441, 1167813944, 11029947952, 106273227216, 1046320856673, 10537366304920, 108606982421301, 1145873284492738, 12375688888657414, 136802023177966948, 1547385154016264531
OFFSET
2,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, The number of impedances of an n-terminal network, Bell Syst. Tech. J., 18 (1939), 300-314.
FORMULA
a(n) = A003128(n) + 2 * A003129(n) + U(n) where U(n) = Sum_{k=2..n} u(n) * Stirling2(n, k), and u(n) = (20(n)_4 + 10(n)_5 + (n)_6) / 8 where (n)_k = n * (n - 1) * ... * (n - k + 1) denotes the falling factorial. - Sean A. Irvine, Feb 03 2015
MATHEMATICA
A003128[n_]:= A003128[n]= Sum[StirlingS2[n, k]*Binomial[k, 2], {k, 0, n}];
A003129[n_]:= A003129[n]= Sum[StirlingS2[n, k]*Binomial[Binomial[k, 2], 2], {k, 0, n}];
U[n_]:= Sum[15*k*Binomial[k+1, 5]*StirlingS2[n, k], {k, 0, n}];
A003130[n_]:= A003128[n] +2*A003129[n] +U[n];
Table[A003130[n], {n, 0, 40}] (* G. C. Greubel, Nov 04 2022 *)
PROG
(Magma)
A003128:= func< n | (&+[Binomial(k, 2)*StirlingSecond(n, k): k in [0..n]]) >;
A003129:= func< n | (&+[Binomial(Binomial(k, 2), 2)*StirlingSecond(n, k): k in [0..n]]) >;
U:= func< n | 15*(&+[k*Binomial(k+1, 5)*StirlingSecond(n, k): k in [0..n]]) >;
A003130:= func< n | A003128(n)+ 2*A003129(n) +U(n) >;
[A003130(n): n in [2..40]]; // G. C. Greubel, Nov 04 2022
(SageMath)
def A003128(n): return sum(binomial(k, 2)*stirling_number2(n, k) for k in range(n+1))
def A003129(n): return sum(binomial(binomial(k, 2), 2)*stirling_number2(n, k) for k in range(n+1))
def U(n): return 15*sum(k*binomial(k+1, 5)*stirling_number2(n, k) for k in range(n+1))
def A003130(n): return A003128(n) +2*A003129(n) +U(n)
[A003130(n) for n in range(2, 40)] # G. C. Greubel, Nov 04 2022
CROSSREFS
Sequence in context: A110216 A218839 A036276 * A015000 A220225 A213376
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Feb 03 2015
STATUS
approved