login
A003129
Number of transfer impedances of an n-terminal network.
(Formerly M3131)
3
0, 3, 33, 270, 2025, 14868, 109851, 827508, 6397665, 50932233, 418175274, 3542883864, 30972408558, 279287247333, 2596195945977, 24862074701208, 245091667488207, 2485294443056496, 25903024863885465, 277278282774462210
OFFSET
2,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, The number of impedances of an n-terminal network, Bell Syst. Tech. J., 18 (1939), 300-314.
FORMULA
E.g.f.: (exp(x) + 3)*(exp(x) - 1)^3*exp(exp(x) - 1)/8.
a(n) = Sum_{k=0..n} Stirling2(n,k)*binomial(binomial(k,2),2).
MATHEMATICA
A003129[n_]:= A003129[n]= Sum[StirlingS2[n, k]*Binomial[Binomial[k, 2], 2], {k, 0, n}];
Table[A003129[n], {n, 0, 40}] (* G. C. Greubel, Nov 04 2022 *)
PROG
(Magma) [(&+[Binomial(Binomial(k, 2), 2)*StirlingSecond(n, k): k in [0..n]]): n in [2..40]]; // G. C. Greubel, Nov 04 2022
(SageMath)
def A003129(n): return sum(binomial(binomial(k, 2), 2)*stirling_number2(n, k) for k in range(n+1))
[A003129(n) for n in range(2, 40)] # G. C. Greubel, Nov 04 2022
CROSSREFS
Sequence in context: A331193 A206950 A189644 * A190542 A180416 A043038
KEYWORD
nonn
STATUS
approved