login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036279
Denominators in the Taylor series for tan(x).
16
1, 3, 15, 315, 2835, 155925, 6081075, 638512875, 10854718875, 1856156927625, 194896477400625, 2900518163668125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 122529844256906551386796875, 4043484860477916195764296875
OFFSET
1,2
COMMENTS
The n-th coefficient of Taylor series for tan(x) appears to be identical to the quotient A160469(n)/A156769(n). - Johannes W. Meijer, May 24 2009
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.67).
G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74.
H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 329.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..253 (first 100 terms from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.67).
Eric Weisstein's World of Mathematics, Hyperbolic Tangent.
Eric Weisstein's World of Mathematics, Tangent.
FORMULA
a(n) = denominator((-1)^(n-1)*2^(2*n)*(2^(2*n)-1)*Bernoulli(2*n)/(2*n)!). - Johannes W. Meijer, May 24 2009
Let R(x) = (cos(x*Pi/2) + sin(x*Pi/2))*(4^x-2^x)*Zeta(1-x)/(x-1)!. Then a(n) = denominator(R(2*n)) and A002430(n) = numerator(R(2*n)). - Peter Luschny, Aug 25 2015
EXAMPLE
tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + ... =
Sum_{n >= 1} (2^(2n) - 1) * (2x)^(2n-1) * |Bernoulli_2n| / (n*(2n-1)!).
The coefficients in the expansion of tan x are 0, 1, 0, 1/3, 0, 2/15, 0, 17/315, 0, 62/2835, 0, 1382/155925, 0, 21844/6081075, 0, 929569/638512875, 0, ... = A002430/A036279
tanh(x) = x - (1/3)*x^3 + (2/15)*x^5 - (17/315)*x^7 + (62/2835)*x^9 - (1382/155925)*x^11 + ...
The coefficients in the expansion of tanh x are 0, 1, 0, -1/3, 0, 2/15, 0, -17/315, 0, 62/2835, 0, -1382/155925, 0, 21844/6081075, 0, -929569/638512875, 0, 6404582/10854718875, 0, -443861162/1856156927625, ... = A002430/A036279
MAPLE
R := n -> (-1)^floor(n/2)*(4^n-2^n)*Zeta(1-n)/(n-1)!:
seq(denom(R(2*n)), n=1..18); # Peter Luschny, Aug 25 2015
MATHEMATICA
f[n_] := (-1)^Floor[n/2] (4^n - 2^n) Zeta[1 - n]/(n - 1)!; Table[Denominator@ f[2 n], {n, 17}] (* Michael De Vlieger, Aug 25 2015 *)
CROSSREFS
KEYWORD
nonn,easy,frac
EXTENSIONS
Incorrect comment by Stephen Crowley deleted by Johannes W. Meijer, Jan 19 2009
STATUS
approved