login
A160469
The left hand column of the triangle A160468.
9
1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 1936767361654, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, 1736640792209901647222, 418781231495293038913922
OFFSET
1,3
COMMENTS
Resembles A002430, the numerators of the Taylor series for tan(x). The first difference occurs at a(12). (Its resemblance to this sequence led to the conjecture A160469(n) = A002430(n)*A089170(n-1).)
FORMULA
a(n) = A002430(n)*A089170(n-1) with A002430 (n) = numer((-1)^(n-1)*2^(2*n)*(2^(2*n)-1)* bernoulli(2*n)/(2*n)!) and A089170 (n-1) = numer(2*bernoulli(2*n)* (4^n-1)/(2*n))/ numer((4^n-1)*bernoulli(2*n)/(2*n)!) for n = 1, 2, 3, ....
CROSSREFS
Equals the first left hand column of A160468.
Equals A002430(n)*A089170(n-1).
Equals (A002430(n)/A036279(n))*(A117972(n)/A000265(n)).
Equals A048896(n-1)*A002425(n).
Cf. A156769 (which resembles the denominators of the Taylor series for tan(x)).
Sequence in context: A226417 A191295 A002430 * A176581 A303374 A357737
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, May 24 2009
STATUS
approved