login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators in the Taylor series for tan(x).
16

%I #52 Nov 04 2023 08:43:03

%S 1,3,15,315,2835,155925,6081075,638512875,10854718875,1856156927625,

%T 194896477400625,2900518163668125,3698160658676859375,

%U 1298054391195577640625,263505041412702261046875,122529844256906551386796875,4043484860477916195764296875

%N Denominators in the Taylor series for tan(x).

%C The n-th coefficient of Taylor series for tan(x) appears to be identical to the quotient A160469(n)/A156769(n). - _Johannes W. Meijer_, May 24 2009

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.67).

%D G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.

%D A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74.

%D H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 329.

%H Seiichi Manyama, <a href="/A036279/b036279.txt">Table of n, a(n) for n = 1..253</a> (first 100 terms from T. D. Noe)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.67).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HyperbolicTangent.html">Hyperbolic Tangent</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Tangent.html">Tangent</a>.

%F a(n) = denominator((-1)^(n-1)*2^(2*n)*(2^(2*n)-1)*Bernoulli(2*n)/(2*n)!). - _Johannes W. Meijer_, May 24 2009

%F Let R(x) = (cos(x*Pi/2) + sin(x*Pi/2))*(4^x-2^x)*Zeta(1-x)/(x-1)!. Then a(n) = denominator(R(2*n)) and A002430(n) = numerator(R(2*n)). - _Peter Luschny_, Aug 25 2015

%e tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + ... =

%e Sum_{n >= 1} (2^(2n) - 1) * (2x)^(2n-1) * |Bernoulli_2n| / (n*(2n-1)!).

%e The coefficients in the expansion of tan x are 0, 1, 0, 1/3, 0, 2/15, 0, 17/315, 0, 62/2835, 0, 1382/155925, 0, 21844/6081075, 0, 929569/638512875, 0, ... = A002430/A036279

%e tanh(x) = x - (1/3)*x^3 + (2/15)*x^5 - (17/315)*x^7 + (62/2835)*x^9 - (1382/155925)*x^11 + ...

%e The coefficients in the expansion of tanh x are 0, 1, 0, -1/3, 0, 2/15, 0, -17/315, 0, 62/2835, 0, -1382/155925, 0, 21844/6081075, 0, -929569/638512875, 0, 6404582/10854718875, 0, -443861162/1856156927625, ... = A002430/A036279

%p R := n -> (-1)^floor(n/2)*(4^n-2^n)*Zeta(1-n)/(n-1)!:

%p seq(denom(R(2*n)), n=1..18); # _Peter Luschny_, Aug 25 2015

%t f[n_] := (-1)^Floor[n/2] (4^n - 2^n) Zeta[1 - n]/(n - 1)!; Table[Denominator@ f[2 n], {n, 17}] (* _Michael De Vlieger_, Aug 25 2015 *)

%Y Cf. A002430, A000182, A099612, A156769, A160469.

%K nonn,easy,frac

%O 1,2

%A _N. J. A. Sloane_

%E Incorrect comment by Stephen Crowley deleted by _Johannes W. Meijer_, Jan 19 2009