OFFSET
1,2
LINKS
Deping Huang, The bowl sequence
FORMULA
a(1) = 1, a(n+1) = n*(2*n+1)*a(n) + (1/2^(2*n))*Sum_{k=1..n-1} A(n,k)*a(k),
A(n,k) = 2^(2*k)*(2*n-2*k-2)!*(4*n-4*k-5)*(2*n+1)!/((2*k-1)*(n-k+1)*(n-k-1)).
EXAMPLE
a(1) = 1.
a(2) = 1*(2*1+1)*a(1) = 3.
a(3) = -15*a(1) + 2*(2*2+1)*a(2) = 15.
MATHEMATICA
m = 32; (Range[0, m]! * CoefficientList[Series[ArcTan[1 - Sqrt[1 - x^2]], {x, 0, m}], x])[[3 ;; -1 ;; 2]] (* Amiram Eldar, Apr 04 2020 *)
PROG
(PARI) a(n)={(2*n)!*polcoef(atan(1 - sqrt(1 - x^2 + O(x*x^(2*n)))), 2*n)} \\ Andrew Howroyd, Apr 04 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Deping Huang, Apr 02 2020
STATUS
approved